xgboost/tests/cpp/linear/test_linear.cu
Jiaming Yuan 972730cde0
Use matrix for gradient. (#9508)
- Use the `linalg::Matrix` for storing gradients.
- New API for the custom objective.
- Custom objective for multi-class/multi-target is now required to return the correct shape.
- Custom objective for Python can accept arrays with any strides. (row-major, column-major)
2023-08-24 05:29:52 +08:00

37 lines
1012 B
Plaintext

/**
* Copyright 2018-2023, XGBoost Contributors
*/
#include <xgboost/linear_updater.h>
#include <xgboost/gbm.h>
#include "../helpers.h"
#include "test_json_io.h"
#include "../../../src/gbm/gblinear_model.h"
namespace xgboost {
TEST(Linear, GPUCoordinate) {
size_t constexpr kRows = 10;
size_t constexpr kCols = 10;
auto mat = xgboost::RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
auto ctx = MakeCUDACtx(0);
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
xgboost::LinearUpdater::Create("gpu_coord_descent", &ctx));
updater->Configure({{"eta", "1."}});
auto gpair = linalg::Constant(&ctx, xgboost::GradientPair(-5, 1.0), mat->Info().num_row_, 1);
xgboost::gbm::GBLinearModel model{&mparam};
model.LazyInitModel();
updater->Update(&gpair, mat.get(), &model, gpair.Size());
ASSERT_EQ(model.Bias()[0], 5.0f);
}
TEST(GPUCoordinate, JsonIO) {
TestUpdaterJsonIO("gpu_coord_descent");
}
} // namespace xgboost