--------- Co-authored-by: Dmitry Razdoburdin <> Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
321 lines
12 KiB
C++
321 lines
12 KiB
C++
/*!
|
|
* Copyright 2017-2024 by Contributors
|
|
* \file hist_updater.cc
|
|
*/
|
|
|
|
#include "hist_updater.h"
|
|
|
|
#include <oneapi/dpl/random>
|
|
|
|
#include "../common/hist_util.h"
|
|
#include "../../src/collective/allreduce.h"
|
|
|
|
namespace xgboost {
|
|
namespace sycl {
|
|
namespace tree {
|
|
|
|
template <typename GradientSumT>
|
|
void HistUpdater<GradientSumT>::SetHistSynchronizer(
|
|
HistSynchronizer<GradientSumT> *sync) {
|
|
hist_synchronizer_.reset(sync);
|
|
}
|
|
|
|
template <typename GradientSumT>
|
|
void HistUpdater<GradientSumT>::SetHistRowsAdder(
|
|
HistRowsAdder<GradientSumT> *adder) {
|
|
hist_rows_adder_.reset(adder);
|
|
}
|
|
|
|
template <typename GradientSumT>
|
|
void HistUpdater<GradientSumT>::BuildHistogramsLossGuide(
|
|
ExpandEntry entry,
|
|
const common::GHistIndexMatrix &gmat,
|
|
RegTree *p_tree,
|
|
const USMVector<GradientPair, MemoryType::on_device> &gpair_device) {
|
|
nodes_for_explicit_hist_build_.clear();
|
|
nodes_for_subtraction_trick_.clear();
|
|
nodes_for_explicit_hist_build_.push_back(entry);
|
|
|
|
if (!(*p_tree)[entry.nid].IsRoot()) {
|
|
auto sibling_id = entry.GetSiblingId(p_tree);
|
|
nodes_for_subtraction_trick_.emplace_back(sibling_id, p_tree->GetDepth(sibling_id));
|
|
}
|
|
|
|
std::vector<int> sync_ids;
|
|
hist_rows_adder_->AddHistRows(this, &sync_ids, p_tree);
|
|
qu_.wait_and_throw();
|
|
BuildLocalHistograms(gmat, p_tree, gpair_device);
|
|
hist_synchronizer_->SyncHistograms(this, sync_ids, p_tree);
|
|
}
|
|
|
|
template<typename GradientSumT>
|
|
void HistUpdater<GradientSumT>::BuildLocalHistograms(
|
|
const common::GHistIndexMatrix &gmat,
|
|
RegTree *p_tree,
|
|
const USMVector<GradientPair, MemoryType::on_device> &gpair_device) {
|
|
builder_monitor_.Start("BuildLocalHistograms");
|
|
const size_t n_nodes = nodes_for_explicit_hist_build_.size();
|
|
::sycl::event event;
|
|
|
|
for (size_t i = 0; i < n_nodes; i++) {
|
|
const int32_t nid = nodes_for_explicit_hist_build_[i].nid;
|
|
|
|
if (row_set_collection_[nid].Size() > 0) {
|
|
event = BuildHist(gpair_device, row_set_collection_[nid], gmat, &(hist_[nid]),
|
|
&(hist_buffer_.GetDeviceBuffer()), event);
|
|
} else {
|
|
common::InitHist(qu_, &(hist_[nid]), hist_[nid].Size(), &event);
|
|
}
|
|
}
|
|
qu_.wait_and_throw();
|
|
builder_monitor_.Stop("BuildLocalHistograms");
|
|
}
|
|
|
|
template<typename GradientSumT>
|
|
void HistUpdater<GradientSumT>::InitSampling(
|
|
const USMVector<GradientPair, MemoryType::on_device> &gpair,
|
|
USMVector<size_t, MemoryType::on_device>* row_indices) {
|
|
const size_t num_rows = row_indices->Size();
|
|
auto* row_idx = row_indices->Data();
|
|
const auto* gpair_ptr = gpair.DataConst();
|
|
uint64_t num_samples = 0;
|
|
const auto subsample = param_.subsample;
|
|
::sycl::event event;
|
|
|
|
{
|
|
::sycl::buffer<uint64_t, 1> flag_buf(&num_samples, 1);
|
|
uint64_t seed = seed_;
|
|
seed_ += num_rows;
|
|
event = qu_.submit([&](::sycl::handler& cgh) {
|
|
auto flag_buf_acc = flag_buf.get_access<::sycl::access::mode::read_write>(cgh);
|
|
cgh.parallel_for<>(::sycl::range<1>(::sycl::range<1>(num_rows)),
|
|
[=](::sycl::item<1> pid) {
|
|
uint64_t i = pid.get_id(0);
|
|
|
|
// Create minstd_rand engine
|
|
oneapi::dpl::minstd_rand engine(seed, i);
|
|
oneapi::dpl::bernoulli_distribution coin_flip(subsample);
|
|
|
|
auto rnd = coin_flip(engine);
|
|
if (gpair_ptr[i].GetHess() >= 0.0f && rnd) {
|
|
AtomicRef<uint64_t> num_samples_ref(flag_buf_acc[0]);
|
|
row_idx[num_samples_ref++] = i;
|
|
}
|
|
});
|
|
});
|
|
/* After calling a destructor for flag_buf, content will be copyed to num_samples */
|
|
}
|
|
|
|
row_indices->Resize(&qu_, num_samples, 0, &event);
|
|
qu_.wait();
|
|
}
|
|
|
|
template<typename GradientSumT>
|
|
void HistUpdater<GradientSumT>::InitData(
|
|
const common::GHistIndexMatrix& gmat,
|
|
const USMVector<GradientPair, MemoryType::on_device> &gpair,
|
|
const DMatrix& fmat,
|
|
const RegTree& tree) {
|
|
CHECK((param_.max_depth > 0 || param_.max_leaves > 0))
|
|
<< "max_depth or max_leaves cannot be both 0 (unlimited); "
|
|
<< "at least one should be a positive quantity.";
|
|
if (param_.grow_policy == xgboost::tree::TrainParam::kDepthWise) {
|
|
CHECK(param_.max_depth > 0) << "max_depth cannot be 0 (unlimited) "
|
|
<< "when grow_policy is depthwise.";
|
|
}
|
|
builder_monitor_.Start("InitData");
|
|
const auto& info = fmat.Info();
|
|
|
|
// initialize the row set
|
|
{
|
|
row_set_collection_.Clear();
|
|
|
|
// initialize histogram collection
|
|
uint32_t nbins = gmat.cut.Ptrs().back();
|
|
hist_.Init(qu_, nbins);
|
|
|
|
hist_buffer_.Init(qu_, nbins);
|
|
size_t buffer_size = kBufferSize;
|
|
if (buffer_size > info.num_row_ / kMinBlockSize + 1) {
|
|
buffer_size = info.num_row_ / kMinBlockSize + 1;
|
|
}
|
|
hist_buffer_.Reset(buffer_size);
|
|
|
|
// initialize histogram builder
|
|
hist_builder_ = common::GHistBuilder<GradientSumT>(qu_, nbins);
|
|
|
|
USMVector<size_t, MemoryType::on_device>* row_indices = &(row_set_collection_.Data());
|
|
row_indices->Resize(&qu_, info.num_row_);
|
|
size_t* p_row_indices = row_indices->Data();
|
|
// mark subsample and build list of member rows
|
|
if (param_.subsample < 1.0f) {
|
|
CHECK_EQ(param_.sampling_method, xgboost::tree::TrainParam::kUniform)
|
|
<< "Only uniform sampling is supported, "
|
|
<< "gradient-based sampling is only support by GPU Hist.";
|
|
InitSampling(gpair, row_indices);
|
|
} else {
|
|
int has_neg_hess = 0;
|
|
const GradientPair* gpair_ptr = gpair.DataConst();
|
|
::sycl::event event;
|
|
{
|
|
::sycl::buffer<int, 1> flag_buf(&has_neg_hess, 1);
|
|
event = qu_.submit([&](::sycl::handler& cgh) {
|
|
auto flag_buf_acc = flag_buf.get_access<::sycl::access::mode::read_write>(cgh);
|
|
cgh.parallel_for<>(::sycl::range<1>(::sycl::range<1>(info.num_row_)),
|
|
[=](::sycl::item<1> pid) {
|
|
const size_t idx = pid.get_id(0);
|
|
p_row_indices[idx] = idx;
|
|
if (gpair_ptr[idx].GetHess() < 0.0f) {
|
|
AtomicRef<int> has_neg_hess_ref(flag_buf_acc[0]);
|
|
has_neg_hess_ref.fetch_max(1);
|
|
}
|
|
});
|
|
});
|
|
}
|
|
|
|
if (has_neg_hess) {
|
|
size_t max_idx = 0;
|
|
{
|
|
::sycl::buffer<size_t, 1> flag_buf(&max_idx, 1);
|
|
event = qu_.submit([&](::sycl::handler& cgh) {
|
|
cgh.depends_on(event);
|
|
auto flag_buf_acc = flag_buf.get_access<::sycl::access::mode::read_write>(cgh);
|
|
cgh.parallel_for<>(::sycl::range<1>(::sycl::range<1>(info.num_row_)),
|
|
[=](::sycl::item<1> pid) {
|
|
const size_t idx = pid.get_id(0);
|
|
if (gpair_ptr[idx].GetHess() >= 0.0f) {
|
|
AtomicRef<size_t> max_idx_ref(flag_buf_acc[0]);
|
|
p_row_indices[max_idx_ref++] = idx;
|
|
}
|
|
});
|
|
});
|
|
}
|
|
row_indices->Resize(&qu_, max_idx, 0, &event);
|
|
}
|
|
qu_.wait_and_throw();
|
|
}
|
|
}
|
|
row_set_collection_.Init();
|
|
|
|
{
|
|
/* determine layout of data */
|
|
const size_t nrow = info.num_row_;
|
|
const size_t ncol = info.num_col_;
|
|
const size_t nnz = info.num_nonzero_;
|
|
// number of discrete bins for feature 0
|
|
const uint32_t nbins_f0 = gmat.cut.Ptrs()[1] - gmat.cut.Ptrs()[0];
|
|
if (nrow * ncol == nnz) {
|
|
// dense data with zero-based indexing
|
|
data_layout_ = kDenseDataZeroBased;
|
|
} else if (nbins_f0 == 0 && nrow * (ncol - 1) == nnz) {
|
|
// dense data with one-based indexing
|
|
data_layout_ = kDenseDataOneBased;
|
|
} else {
|
|
// sparse data
|
|
data_layout_ = kSparseData;
|
|
}
|
|
}
|
|
|
|
if (data_layout_ == kDenseDataZeroBased || data_layout_ == kDenseDataOneBased) {
|
|
/* specialized code for dense data:
|
|
choose the column that has a least positive number of discrete bins.
|
|
For dense data (with no missing value),
|
|
the sum of gradient histogram is equal to snode[nid] */
|
|
const std::vector<uint32_t>& row_ptr = gmat.cut.Ptrs();
|
|
const auto nfeature = static_cast<bst_uint>(row_ptr.size() - 1);
|
|
uint32_t min_nbins_per_feature = 0;
|
|
for (bst_uint i = 0; i < nfeature; ++i) {
|
|
const uint32_t nbins = row_ptr[i + 1] - row_ptr[i];
|
|
if (nbins > 0) {
|
|
if (min_nbins_per_feature == 0 || min_nbins_per_feature > nbins) {
|
|
min_nbins_per_feature = nbins;
|
|
fid_least_bins_ = i;
|
|
}
|
|
}
|
|
}
|
|
CHECK_GT(min_nbins_per_feature, 0U);
|
|
}
|
|
|
|
std::fill(snode_host_.begin(), snode_host_.end(), NodeEntry<GradientSumT>(param_));
|
|
builder_monitor_.Stop("InitData");
|
|
}
|
|
|
|
template <typename GradientSumT>
|
|
void HistUpdater<GradientSumT>::InitNewNode(int nid,
|
|
const common::GHistIndexMatrix& gmat,
|
|
const USMVector<GradientPair,
|
|
MemoryType::on_device> &gpair,
|
|
const DMatrix& fmat,
|
|
const RegTree& tree) {
|
|
builder_monitor_.Start("InitNewNode");
|
|
|
|
snode_host_.resize(tree.NumNodes(), NodeEntry<GradientSumT>(param_));
|
|
{
|
|
if (tree[nid].IsRoot()) {
|
|
GradStats<GradientSumT> grad_stat;
|
|
if (data_layout_ == kDenseDataZeroBased || data_layout_ == kDenseDataOneBased) {
|
|
const std::vector<uint32_t>& row_ptr = gmat.cut.Ptrs();
|
|
const uint32_t ibegin = row_ptr[fid_least_bins_];
|
|
const uint32_t iend = row_ptr[fid_least_bins_ + 1];
|
|
const auto* hist = reinterpret_cast<GradStats<GradientSumT>*>(hist_[nid].Data());
|
|
|
|
std::vector<GradStats<GradientSumT>> ets(iend - ibegin);
|
|
qu_.memcpy(ets.data(), hist + ibegin,
|
|
(iend - ibegin) * sizeof(GradStats<GradientSumT>)).wait_and_throw();
|
|
for (const auto& et : ets) {
|
|
grad_stat += et;
|
|
}
|
|
} else {
|
|
const common::RowSetCollection::Elem e = row_set_collection_[nid];
|
|
const size_t* row_idxs = e.begin;
|
|
const size_t size = e.Size();
|
|
const GradientPair* gpair_ptr = gpair.DataConst();
|
|
|
|
::sycl::buffer<GradStats<GradientSumT>> buff(&grad_stat, 1);
|
|
qu_.submit([&](::sycl::handler& cgh) {
|
|
auto reduction = ::sycl::reduction(buff, cgh, ::sycl::plus<>());
|
|
cgh.parallel_for<>(::sycl::range<1>(size), reduction,
|
|
[=](::sycl::item<1> pid, auto& sum) {
|
|
size_t i = pid.get_id(0);
|
|
size_t row_idx = row_idxs[i];
|
|
if constexpr (std::is_same<GradientPair::ValueT, GradientSumT>::value) {
|
|
sum += gpair_ptr[row_idx];
|
|
} else {
|
|
sum += GradStats<GradientSumT>(gpair_ptr[row_idx].GetGrad(),
|
|
gpair_ptr[row_idx].GetHess());
|
|
}
|
|
});
|
|
}).wait_and_throw();
|
|
}
|
|
auto rc = collective::Allreduce(
|
|
ctx_, linalg::MakeVec(reinterpret_cast<GradientSumT*>(&grad_stat), 2),
|
|
collective::Op::kSum);
|
|
SafeColl(rc);
|
|
snode_host_[nid].stats = grad_stat;
|
|
} else {
|
|
int parent_id = tree[nid].Parent();
|
|
if (tree[nid].IsLeftChild()) {
|
|
snode_host_[nid].stats = snode_host_[parent_id].best.left_sum;
|
|
} else {
|
|
snode_host_[nid].stats = snode_host_[parent_id].best.right_sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculating the weights
|
|
{
|
|
auto evaluator = tree_evaluator_.GetEvaluator();
|
|
bst_uint parentid = tree[nid].Parent();
|
|
snode_host_[nid].weight = evaluator.CalcWeight(parentid, snode_host_[nid].stats);
|
|
snode_host_[nid].root_gain = evaluator.CalcGain(parentid, snode_host_[nid].stats);
|
|
}
|
|
builder_monitor_.Stop("InitNewNode");
|
|
}
|
|
|
|
template class HistUpdater<float>;
|
|
template class HistUpdater<double>;
|
|
|
|
} // namespace tree
|
|
} // namespace sycl
|
|
} // namespace xgboost
|