xgboost/plugin/sycl/objective/regression_obj.cc
Jiaming Yuan a5a58102e5
Revamp the rabit implementation. (#10112)
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
2024-05-20 11:56:23 +08:00

197 lines
7.0 KiB
C++

/*!
* Copyright 2015-2023 by Contributors
* \file regression_obj.cc
* \brief Definition of regression objectives.
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#pragma GCC diagnostic ignored "-W#pragma-messages"
#include <xgboost/logging.h>
#include <xgboost/objective.h>
#pragma GCC diagnostic pop
#include <cmath>
#include <memory>
#include <vector>
#include "xgboost/host_device_vector.h"
#include "xgboost/json.h"
#include "xgboost/parameter.h"
#include "xgboost/span.h"
#include "../../src/common/transform.h"
#include "../../src/common/common.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#include "../../../src/objective/regression_loss.h"
#pragma GCC diagnostic pop
#include "../../../src/objective/regression_param.h"
#include "../device_manager.h"
#include <CL/sycl.hpp>
namespace xgboost {
namespace sycl {
namespace obj {
DMLC_REGISTRY_FILE_TAG(regression_obj_sycl);
template<typename Loss>
class RegLossObj : public ObjFunction {
protected:
HostDeviceVector<int> label_correct_;
public:
RegLossObj() = default;
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.UpdateAllowUnknown(args);
qu_ = device_manager.GetQueue(ctx_->Device());
}
void GetGradient(const HostDeviceVector<bst_float>& preds,
const MetaInfo &info,
int iter,
linalg::Matrix<GradientPair>* out_gpair) override {
if (info.labels.Size() == 0) return;
CHECK_EQ(preds.Size(), info.labels.Size())
<< " " << "labels are not correctly provided"
<< "preds.size=" << preds.Size() << ", label.size=" << info.labels.Size() << ", "
<< "Loss: " << Loss::Name();
size_t const ndata = preds.Size();
auto const n_targets = this->Targets(info);
out_gpair->Reshape(info.num_row_, n_targets);
// TODO(razdoburdin): add label_correct check
label_correct_.Resize(1);
label_correct_.Fill(1);
bool is_null_weight = info.weights_.Size() == 0;
::sycl::buffer<bst_float, 1> preds_buf(preds.HostPointer(), preds.Size());
::sycl::buffer<bst_float, 1> labels_buf(info.labels.Data()->HostPointer(), info.labels.Size());
::sycl::buffer<GradientPair, 1> out_gpair_buf(out_gpair->Data()->HostPointer(),
out_gpair->Size());
::sycl::buffer<bst_float, 1> weights_buf(is_null_weight ? NULL : info.weights_.HostPointer(),
is_null_weight ? 1 : info.weights_.Size());
auto scale_pos_weight = param_.scale_pos_weight;
if (!is_null_weight) {
CHECK_EQ(info.weights_.Size(), info.labels.Shape(0))
<< "Number of weights should be equal to number of data points.";
}
int flag = 1;
{
::sycl::buffer<int, 1> flag_buf(&flag, 1);
qu_.submit([&](::sycl::handler& cgh) {
auto preds_acc = preds_buf.get_access<::sycl::access::mode::read>(cgh);
auto labels_acc = labels_buf.get_access<::sycl::access::mode::read>(cgh);
auto weights_acc = weights_buf.get_access<::sycl::access::mode::read>(cgh);
auto out_gpair_acc = out_gpair_buf.get_access<::sycl::access::mode::write>(cgh);
auto flag_buf_acc = flag_buf.get_access<::sycl::access::mode::write>(cgh);
cgh.parallel_for<>(::sycl::range<1>(ndata), [=](::sycl::id<1> pid) {
int idx = pid[0];
bst_float p = Loss::PredTransform(preds_acc[idx]);
bst_float w = is_null_weight ? 1.0f : weights_acc[idx/n_targets];
bst_float label = labels_acc[idx];
if (label == 1.0f) {
w *= scale_pos_weight;
}
if (!Loss::CheckLabel(label)) {
// If there is an incorrect label, the host code will know.
flag_buf_acc[0] = 0;
}
out_gpair_acc[idx] = GradientPair(Loss::FirstOrderGradient(p, label) * w,
Loss::SecondOrderGradient(p, label) * w);
});
}).wait();
}
// flag_buf is destroyed, content is copyed to the "flag"
if (flag == 0) {
LOG(FATAL) << Loss::LabelErrorMsg();
}
}
public:
const char* DefaultEvalMetric() const override {
return Loss::DefaultEvalMetric();
}
void PredTransform(HostDeviceVector<float> *io_preds) const override {
size_t const ndata = io_preds->Size();
if (ndata == 0) return;
::sycl::buffer<bst_float, 1> io_preds_buf(io_preds->HostPointer(), io_preds->Size());
qu_.submit([&](::sycl::handler& cgh) {
auto io_preds_acc = io_preds_buf.get_access<::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<>(::sycl::range<1>(ndata), [=](::sycl::id<1> pid) {
int idx = pid[0];
io_preds_acc[idx] = Loss::PredTransform(io_preds_acc[idx]);
});
}).wait();
}
float ProbToMargin(float base_score) const override {
return Loss::ProbToMargin(base_score);
}
struct ObjInfo Task() const override {
return Loss::Info();
};
uint32_t Targets(MetaInfo const& info) const override {
// Multi-target regression.
return std::max(static_cast<size_t>(1), info.labels.Shape(1));
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String(Loss::Name());
out["reg_loss_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
FromJson(in["reg_loss_param"], &param_);
}
protected:
xgboost::obj::RegLossParam param_;
sycl::DeviceManager device_manager;
mutable ::sycl::queue qu_;
};
XGBOOST_REGISTER_OBJECTIVE(SquaredLossRegression,
std::string(xgboost::obj::LinearSquareLoss::Name()) + "_sycl")
.describe("Regression with squared error with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::LinearSquareLoss>(); });
XGBOOST_REGISTER_OBJECTIVE(SquareLogError,
std::string(xgboost::obj::SquaredLogError::Name()) + "_sycl")
.describe("Regression with root mean squared logarithmic error with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::SquaredLogError>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRegression,
std::string(xgboost::obj::LogisticRegression::Name()) + "_sycl")
.describe("Logistic regression for probability regression task with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::LogisticRegression>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticClassification,
std::string(xgboost::obj::LogisticClassification::Name()) + "_sycl")
.describe("Logistic regression for binary classification task with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::LogisticClassification>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRaw,
std::string(xgboost::obj::LogisticRaw::Name()) + "_sycl")
.describe("Logistic regression for classification, output score "
"before logistic transformation with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::LogisticRaw>(); });
} // namespace obj
} // namespace sycl
} // namespace xgboost