xgboost/src/gbm/gbtree-inl.hpp
Vadim Khotilovich c70022e6c4 spelling, wording, and doc fixes in c++ code
I was reading through the code and fixing some things in the comments.
Only a few trivial actual code changes were made to make things more
readable.
2015-12-12 21:40:12 -06:00

521 lines
19 KiB
C++

/*!
* Copyright by Contributors
* \file gbtree-inl.hpp
* \brief gradient boosted tree implementation
* \author Tianqi Chen
*/
#ifndef XGBOOST_GBM_GBTREE_INL_HPP_
#define XGBOOST_GBM_GBTREE_INL_HPP_
#include <vector>
#include <utility>
#include <string>
#include <limits>
#include "./gbm.h"
#include "../utils/omp.h"
#include "../tree/updater.h"
namespace xgboost {
namespace gbm {
/*!
* \brief gradient boosted tree
*/
class GBTree : public IGradBooster {
public:
GBTree(void) {
}
virtual ~GBTree(void) {
this->Clear();
}
virtual void SetParam(const char *name, const char *val) {
using namespace std;
if (!strncmp(name, "bst:", 4)) {
cfg.push_back(std::make_pair(std::string(name+4), std::string(val)));
// set into updaters, if already initialized
for (size_t i = 0; i < updaters.size(); ++i) {
updaters[i]->SetParam(name+4, val);
}
}
if (!strcmp(name, "silent")) {
this->SetParam("bst:silent", val);
}
tparam.SetParam(name, val);
if (trees.size() == 0) mparam.SetParam(name, val);
}
virtual void LoadModel(utils::IStream &fi, bool with_pbuffer) { // NOLINT(*)
this->Clear();
utils::Check(fi.Read(&mparam, sizeof(ModelParam)) != 0,
"GBTree: invalid model file");
trees.resize(mparam.num_trees);
for (size_t i = 0; i < trees.size(); ++i) {
trees[i] = new tree::RegTree();
trees[i]->LoadModel(fi);
}
tree_info.resize(mparam.num_trees);
if (mparam.num_trees != 0) {
utils::Check(fi.Read(&tree_info[0], sizeof(int) * mparam.num_trees) != 0,
"GBTree: invalid model file");
}
if (mparam.num_pbuffer != 0 && with_pbuffer) {
pred_buffer.resize(mparam.PredBufferSize());
pred_counter.resize(mparam.PredBufferSize());
utils::Check(fi.Read(&pred_buffer[0], pred_buffer.size() * sizeof(float)) != 0,
"GBTree: invalid model file");
utils::Check(fi.Read(&pred_counter[0], pred_counter.size() * sizeof(unsigned)) != 0,
"GBTree: invalid model file");
}
}
virtual void SaveModel(utils::IStream &fo, bool with_pbuffer) const { // NOLINT(*)
utils::Assert(mparam.num_trees == static_cast<int>(trees.size()), "GBTree");
if (with_pbuffer) {
fo.Write(&mparam, sizeof(ModelParam));
} else {
ModelParam p = mparam;
p.num_pbuffer = 0;
fo.Write(&p, sizeof(ModelParam));
}
for (size_t i = 0; i < trees.size(); ++i) {
trees[i]->SaveModel(fo);
}
if (tree_info.size() != 0) {
fo.Write(BeginPtr(tree_info), sizeof(int) * tree_info.size());
}
if (mparam.num_pbuffer != 0 && with_pbuffer) {
fo.Write(BeginPtr(pred_buffer), pred_buffer.size() * sizeof(float));
fo.Write(BeginPtr(pred_counter), pred_counter.size() * sizeof(unsigned));
}
}
// initialize the predict buffer
virtual void InitModel(void) {
pred_buffer.clear(); pred_counter.clear();
pred_buffer.resize(mparam.PredBufferSize(), 0.0f);
pred_counter.resize(mparam.PredBufferSize(), 0);
utils::Assert(mparam.num_trees == 0, "GBTree: model already initialized");
utils::Assert(trees.size() == 0, "GBTree: model already initialized");
}
virtual void ResetPredBuffer(size_t num_pbuffer) {
mparam.num_pbuffer = static_cast<int64_t>(num_pbuffer);
pred_buffer.clear(); pred_counter.clear();
pred_buffer.resize(mparam.PredBufferSize(), 0.0f);
pred_counter.resize(mparam.PredBufferSize(), 0);
}
virtual bool AllowLazyCheckPoint(void) const {
return !(tparam.distcol_mode != 0 && mparam.num_output_group != 1);
}
virtual void DoBoost(IFMatrix *p_fmat,
int64_t buffer_offset,
const BoosterInfo &info,
std::vector<bst_gpair> *in_gpair) {
const std::vector<bst_gpair> &gpair = *in_gpair;
std::vector<std::vector<tree::RegTree*> > new_trees;
if (mparam.num_output_group == 1) {
new_trees.push_back(BoostNewTrees(gpair, p_fmat, buffer_offset, info, 0));
} else {
const int ngroup = mparam.num_output_group;
utils::Check(gpair.size() % ngroup == 0,
"must have exactly ngroup*nrow gpairs");
std::vector<bst_gpair> tmp(gpair.size()/ngroup);
for (int gid = 0; gid < ngroup; ++gid) {
bst_omp_uint nsize = static_cast<bst_omp_uint>(tmp.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
tmp[i] = gpair[i * ngroup + gid];
}
new_trees.push_back(BoostNewTrees(tmp, p_fmat, buffer_offset, info, gid));
}
}
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->CommitModel(new_trees[gid], gid);
}
}
virtual void Predict(IFMatrix *p_fmat,
int64_t buffer_offset,
const BoosterInfo &info,
std::vector<float> *out_preds,
unsigned ntree_limit = 0) {
int nthread;
#pragma omp parallel
{
nthread = omp_get_num_threads();
}
InitThreadTemp(nthread);
std::vector<float> &preds = *out_preds;
const size_t stride = info.num_row * mparam.num_output_group;
preds.resize(stride * (mparam.size_leaf_vector+1));
// start collecting the prediction
utils::IIterator<RowBatch> *iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch &batch = iter->Value();
// parallel over local batch
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
const int tid = omp_get_thread_num();
tree::RegTree::FVec &feats = thread_temp[tid];
int64_t ridx = static_cast<int64_t>(batch.base_rowid + i);
utils::Assert(static_cast<size_t>(ridx) < info.num_row, "data row index exceed bound");
// loop over output groups
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->Pred(batch[i],
buffer_offset < 0 ? -1 : buffer_offset + ridx,
gid, info.GetRoot(ridx), &feats,
&preds[ridx * mparam.num_output_group + gid], stride,
ntree_limit);
}
}
}
}
virtual void Predict(const SparseBatch::Inst &inst,
std::vector<float> *out_preds,
unsigned ntree_limit,
unsigned root_index) {
if (thread_temp.size() == 0) {
thread_temp.resize(1, tree::RegTree::FVec());
thread_temp[0].Init(mparam.num_feature);
}
out_preds->resize(mparam.num_output_group * (mparam.size_leaf_vector+1));
// loop over output groups
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->Pred(inst, -1, gid, root_index, &thread_temp[0],
&(*out_preds)[gid], mparam.num_output_group,
ntree_limit);
}
}
virtual void PredictLeaf(IFMatrix *p_fmat,
const BoosterInfo &info,
std::vector<float> *out_preds,
unsigned ntree_limit) {
int nthread;
#pragma omp parallel
{
nthread = omp_get_num_threads();
}
InitThreadTemp(nthread);
this->PredPath(p_fmat, info, out_preds, ntree_limit);
}
virtual std::vector<std::string> DumpModel(const utils::FeatMap& fmap, int option) {
std::vector<std::string> dump;
for (size_t i = 0; i < trees.size(); i++) {
dump.push_back(trees[i]->DumpModel(fmap, option&1));
}
return dump;
}
protected:
// clear the model
inline void Clear(void) {
for (size_t i = 0; i < trees.size(); ++i) {
delete trees[i];
}
for (size_t i = 0; i < updaters.size(); ++i) {
delete updaters[i];
}
updaters.clear();
trees.clear();
pred_buffer.clear();
pred_counter.clear();
}
// initialize updater before using them
inline void InitUpdater(void) {
if (tparam.updater_initialized != 0) return;
for (size_t i = 0; i < updaters.size(); ++i) {
delete updaters[i];
}
updaters.clear();
std::string tval = tparam.updater_seq;
char *pstr;
pstr = std::strtok(&tval[0], ",");
while (pstr != NULL) {
updaters.push_back(tree::CreateUpdater(pstr));
for (size_t j = 0; j < cfg.size(); ++j) {
// set parameters
updaters.back()->SetParam(cfg[j].first.c_str(), cfg[j].second.c_str());
}
pstr = std::strtok(NULL, ",");
}
tparam.updater_initialized = 1;
}
// do group specific group
inline std::vector<tree::RegTree*>
BoostNewTrees(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
int64_t buffer_offset,
const BoosterInfo &info,
int bst_group) {
std::vector<tree::RegTree *> new_trees;
this->InitUpdater();
// create the trees
for (int i = 0; i < tparam.num_parallel_tree; ++i) {
new_trees.push_back(new tree::RegTree());
for (size_t j = 0; j < cfg.size(); ++j) {
new_trees.back()->param.SetParam(cfg[j].first.c_str(), cfg[j].second.c_str());
}
new_trees.back()->InitModel();
}
// update the trees
for (size_t i = 0; i < updaters.size(); ++i) {
updaters[i]->Update(gpair, p_fmat, info, new_trees);
}
// optimization, update buffer, if possible
// this is only under distributed column mode
// for safety check of lazy checkpoint
if (
buffer_offset >= 0 &&
new_trees.size() == 1 && updaters.size() > 0 &&
updaters.back()->GetLeafPosition() != NULL) {
utils::Check(info.num_row == p_fmat->buffered_rowset().size(),
"distributed mode is not compatible with prob_buffer_row");
this->UpdateBufferByPosition(p_fmat,
buffer_offset, bst_group,
*new_trees[0],
updaters.back()->GetLeafPosition());
}
return new_trees;
}
// commit new trees all at once
inline void CommitModel(const std::vector<tree::RegTree*> &new_trees, int bst_group) {
for (size_t i = 0; i < new_trees.size(); ++i) {
trees.push_back(new_trees[i]);
tree_info.push_back(bst_group);
}
mparam.num_trees += static_cast<int>(new_trees.size());
}
// update buffer by pre-cached position
inline void UpdateBufferByPosition(IFMatrix *p_fmat,
int64_t buffer_offset,
int bst_group,
const tree::RegTree &new_tree,
const int* leaf_position) {
const std::vector<bst_uint> &rowset = p_fmat->buffered_rowset();
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < ndata; ++i) {
const bst_uint ridx = rowset[i];
const int64_t bid = mparam.BufferOffset(buffer_offset + ridx, bst_group);
const int tid = leaf_position[ridx];
utils::Assert(pred_counter[bid] == trees.size(), "cached buffer not up to date");
utils::Assert(tid >= 0, "invalid leaf position");
pred_buffer[bid] += new_tree[tid].leaf_value();
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
pred_buffer[bid + i + 1] += new_tree.leafvec(tid)[i];
}
pred_counter[bid] += tparam.num_parallel_tree;
}
}
// make a prediction for a single instance
inline void Pred(const RowBatch::Inst &inst,
int64_t buffer_index,
int bst_group,
unsigned root_index,
tree::RegTree::FVec *p_feats,
float *out_pred, size_t stride,
unsigned ntree_limit) {
size_t itop = 0;
float psum = 0.0f;
// sum of leaf vector
std::vector<float> vec_psum(mparam.size_leaf_vector, 0.0f);
const int64_t bid = mparam.BufferOffset(buffer_index, bst_group);
// number of valid trees
unsigned treeleft = ntree_limit == 0 ? std::numeric_limits<unsigned>::max() : ntree_limit;
// load buffered results if any
if (bid >= 0 && ntree_limit == 0) {
itop = pred_counter[bid];
psum = pred_buffer[bid];
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
vec_psum[i] = pred_buffer[bid + i + 1];
}
}
if (itop != trees.size()) {
p_feats->Fill(inst);
for (size_t i = itop; i < trees.size(); ++i) {
if (tree_info[i] == bst_group) {
int tid = trees[i]->GetLeafIndex(*p_feats, root_index);
psum += (*trees[i])[tid].leaf_value();
for (int j = 0; j < mparam.size_leaf_vector; ++j) {
vec_psum[j] += trees[i]->leafvec(tid)[j];
}
if (--treeleft == 0) break;
}
}
p_feats->Drop(inst);
}
// updated the buffered results
if (bid >= 0 && ntree_limit == 0) {
pred_counter[bid] = static_cast<unsigned>(trees.size());
pred_buffer[bid] = psum;
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
pred_buffer[bid + i + 1] = vec_psum[i];
}
}
out_pred[0] = psum;
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
out_pred[stride * (i + 1)] = vec_psum[i];
}
}
// predict independent leaf index
inline void PredPath(IFMatrix *p_fmat,
const BoosterInfo &info,
std::vector<float> *out_preds,
unsigned ntree_limit) {
// number of valid trees
if (ntree_limit == 0 || ntree_limit > trees.size()) {
ntree_limit = static_cast<unsigned>(trees.size());
}
std::vector<float> &preds = *out_preds;
preds.resize(info.num_row * ntree_limit);
// start collecting the prediction
utils::IIterator<RowBatch> *iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch &batch = iter->Value();
// parallel over local batch
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
const int tid = omp_get_thread_num();
size_t ridx = static_cast<size_t>(batch.base_rowid + i);
tree::RegTree::FVec &feats = thread_temp[tid];
feats.Fill(batch[i]);
for (unsigned j = 0; j < ntree_limit; ++j) {
int tid = trees[j]->GetLeafIndex(feats, info.GetRoot(ridx));
preds[ridx * ntree_limit + j] = static_cast<float>(tid);
}
feats.Drop(batch[i]);
}
}
}
// init thread buffers
inline void InitThreadTemp(int nthread) {
int prev_thread_temp_size = thread_temp.size();
if (prev_thread_temp_size < nthread) {
thread_temp.resize(nthread, tree::RegTree::FVec());
for (int i = prev_thread_temp_size; i < nthread; ++i) {
thread_temp[i].Init(mparam.num_feature);
}
}
}
// --- data structure ---
/*! \brief training parameters */
struct TrainParam {
/*! \brief number of threads */
int nthread;
/*!
* \brief number of parallel trees constructed each iteration
* use this option to support boosted random forest
*/
int num_parallel_tree;
/*! \brief whether updater is already initialized */
int updater_initialized;
/*! \brief distributed column mode */
int distcol_mode;
/*! \brief tree updater sequence */
std::string updater_seq;
// construction
TrainParam(void) {
nthread = 0;
updater_seq = "grow_colmaker,prune";
num_parallel_tree = 1;
updater_initialized = 0;
distcol_mode = 0;
}
inline void SetParam(const char *name, const char *val){
using namespace std;
if (!strcmp(name, "updater") &&
strcmp(updater_seq.c_str(), val) != 0) {
updater_seq = val;
updater_initialized = 0;
}
if (!strcmp(name, "dsplit") && !strcmp(val, "col")) {
distcol_mode = 1;
}
if (!strcmp(name, "nthread")) {
omp_set_num_threads(nthread = atoi(val));
}
if (!strcmp(name, "num_parallel_tree")) {
num_parallel_tree = atoi(val);
}
}
};
/*! \brief model parameters */
struct ModelParam {
/*! \brief number of trees */
int num_trees;
/*! \brief number of root: default 0, means single tree */
int num_roots;
/*! \brief number of features to be used by trees */
int num_feature;
/*! \brief size of prediction buffer allocated used for buffering */
int64_t num_pbuffer;
/*!
* \brief how many output group a single instance can produce
* this affects the behavior of number of output we have:
* suppose we have n instance and k group, output will be k*n
*/
int num_output_group;
/*! \brief size of leaf vector needed in tree */
int size_leaf_vector;
/*! \brief reserved parameters */
int reserved[31];
/*! \brief constructor */
ModelParam(void) {
std::memset(this, 0, sizeof(ModelParam));
num_trees = 0;
num_roots = num_feature = 0;
num_pbuffer = 0;
num_output_group = 1;
size_leaf_vector = 0;
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name, const char *val) {
using namespace std;
if (!strcmp("num_pbuffer", name)) num_pbuffer = atol(val);
if (!strcmp("num_output_group", name)) num_output_group = atol(val);
if (!strcmp("bst:num_roots", name)) num_roots = atoi(val);
if (!strcmp("bst:num_feature", name)) num_feature = atoi(val);
if (!strcmp("bst:size_leaf_vector", name)) size_leaf_vector = atoi(val);
}
/*! \return size of prediction buffer actually needed */
inline size_t PredBufferSize(void) const {
return num_output_group * num_pbuffer * (size_leaf_vector + 1);
}
/*!
* \brief get the buffer offset given a buffer index and group id
* \return calculated buffer offset
*/
inline int64_t BufferOffset(int64_t buffer_index, int bst_group) const {
if (buffer_index < 0) return -1;
utils::Check(buffer_index < num_pbuffer, "buffer_index exceed num_pbuffer");
return (buffer_index + num_pbuffer * bst_group) * (size_leaf_vector + 1);
}
};
// training parameter
TrainParam tparam;
// model parameter
ModelParam mparam;
/*! \brief vector of trees stored in the model */
std::vector<tree::RegTree*> trees;
/*! \brief some information indicator of the tree, reserved */
std::vector<int> tree_info;
/*! \brief prediction buffer */
std::vector<float> pred_buffer;
/*! \brief prediction buffer counter, remember the prediction */
std::vector<unsigned> pred_counter;
// ----training fields----
// configurations for tree
std::vector< std::pair<std::string, std::string> > cfg;
// temporal storage for per thread
std::vector<tree::RegTree::FVec> thread_temp;
// the updaters that can be applied to each of tree
std::vector<tree::IUpdater*> updaters;
};
} // namespace gbm
} // namespace xgboost
#endif // XGBOOST_GBM_GBTREE_INL_HPP_