41 lines
1.2 KiB
Python
41 lines
1.2 KiB
Python
import xgboost as xgb
|
|
import pytest
|
|
import sys
|
|
import numpy as np
|
|
|
|
sys.path.append("tests/python")
|
|
import testing as tm # noqa
|
|
import test_with_sklearn as twskl # noqa
|
|
|
|
pytestmark = pytest.mark.skipif(**tm.no_sklearn())
|
|
|
|
rng = np.random.RandomState(1994)
|
|
|
|
|
|
def test_gpu_binary_classification():
|
|
from sklearn.datasets import load_digits
|
|
from sklearn.model_selection import KFold
|
|
|
|
digits = load_digits(2)
|
|
y = digits['target']
|
|
X = digits['data']
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for cls in (xgb.XGBClassifier, xgb.XGBRFClassifier):
|
|
for train_index, test_index in kf.split(X, y):
|
|
xgb_model = cls(
|
|
random_state=42, tree_method='gpu_hist',
|
|
n_estimators=4, gpu_id='0').fit(X[train_index], y[train_index])
|
|
preds = xgb_model.predict(X[test_index])
|
|
labels = y[test_index]
|
|
err = sum(1 for i in range(len(preds))
|
|
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
|
|
assert err < 0.1
|
|
|
|
|
|
def test_boost_from_prediction_gpu_hist():
|
|
twskl.run_boost_from_prediction('gpu_hist')
|
|
|
|
|
|
def test_num_parallel_tree():
|
|
twskl.run_boston_housing_rf_regression("gpu_hist")
|