This PR changes base_margin into a 3-dim array, with one of them being reserved for multi-target classification. Also, a breaking change is made for binary serialization due to extra dimension along with a fix for saving the feature weights. Lastly, it unifies the prediction initialization between CPU and GPU. After this PR, the meta info setter in Python will be based on array interface.
256 lines
9.0 KiB
C++
256 lines
9.0 KiB
C++
/*!
|
|
* Copyright 2019-2021 by XGBoost Contributors
|
|
*/
|
|
#pragma once
|
|
#include <gtest/gtest.h>
|
|
#include <dmlc/filesystem.h>
|
|
#include <random>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <fstream>
|
|
|
|
#include "../helpers.h"
|
|
#include "../../../src/common/hist_util.h"
|
|
#include "../../../src/data/simple_dmatrix.h"
|
|
#include "../../../src/data/adapter.h"
|
|
|
|
#ifdef __CUDACC__
|
|
#include <xgboost/json.h>
|
|
#include "../../../src/data/device_adapter.cuh"
|
|
#endif // __CUDACC__
|
|
|
|
// Some helper functions used to test both GPU and CPU algorithms
|
|
//
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
// Generate columns with different ranges
|
|
inline std::vector<float> GenerateRandom(int num_rows, int num_columns) {
|
|
std::vector<float> x(num_rows*num_columns);
|
|
std::mt19937 rng(0);
|
|
std::uniform_real_distribution<float> dist(0.0, 1.0);
|
|
std::generate(x.begin(), x.end(), [&]() { return dist(rng); });
|
|
for (auto i = 0; i < num_columns; i++) {
|
|
for (auto j = 0; j < num_rows; j++) {
|
|
x[j * num_columns + i] += i;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
inline std::vector<float> GenerateRandomWeights(int num_rows) {
|
|
std::vector<float> w(num_rows);
|
|
std::mt19937 rng(1);
|
|
std::uniform_real_distribution<float> dist(0.0, 1.0);
|
|
std::generate(w.begin(), w.end(), [&]() { return dist(rng); });
|
|
return w;
|
|
}
|
|
|
|
#ifdef __CUDACC__
|
|
inline data::CupyAdapter AdapterFromData(const thrust::device_vector<float> &x,
|
|
int num_rows, int num_columns) {
|
|
Json array_interface{Object()};
|
|
std::vector<Json> shape = {Json(static_cast<Integer::Int>(num_rows)),
|
|
Json(static_cast<Integer::Int>(num_columns))};
|
|
array_interface["shape"] = Array(shape);
|
|
std::vector<Json> j_data{
|
|
Json(Integer(reinterpret_cast<Integer::Int>(x.data().get()))),
|
|
Json(Boolean(false))};
|
|
array_interface["data"] = j_data;
|
|
array_interface["version"] = 3;
|
|
array_interface["typestr"] = String("<f4");
|
|
std::string str;
|
|
Json::Dump(array_interface, &str);
|
|
return data::CupyAdapter(str);
|
|
}
|
|
#endif
|
|
|
|
inline std::shared_ptr<data::SimpleDMatrix>
|
|
GetDMatrixFromData(const std::vector<float> &x, int num_rows, int num_columns) {
|
|
data::DenseAdapter adapter(x.data(), num_rows, num_columns);
|
|
return std::shared_ptr<data::SimpleDMatrix>(new data::SimpleDMatrix(
|
|
&adapter, std::numeric_limits<float>::quiet_NaN(), 1));
|
|
}
|
|
|
|
inline std::shared_ptr<DMatrix> GetExternalMemoryDMatrixFromData(
|
|
const std::vector<float>& x, int num_rows, int num_columns,
|
|
size_t page_size, const dmlc::TemporaryDirectory& tempdir) {
|
|
// Create the svm file in a temp dir
|
|
const std::string tmp_file = tempdir.path + "/temp.libsvm";
|
|
std::ofstream fo(tmp_file.c_str());
|
|
for (auto i = 0; i < num_rows; i++) {
|
|
std::stringstream row_data;
|
|
for (auto j = 0; j < num_columns; j++) {
|
|
row_data << 1 << " " << j << ":" << std::setprecision(15)
|
|
<< x[i * num_columns + j];
|
|
}
|
|
fo << row_data.str() << "\n";
|
|
}
|
|
fo.close();
|
|
return std::shared_ptr<DMatrix>(DMatrix::Load(
|
|
tmp_file + "#" + tmp_file + ".cache", true, false, "auto"));
|
|
}
|
|
|
|
// Test that elements are approximately equally distributed among bins
|
|
inline void TestBinDistribution(const HistogramCuts &cuts, int column_idx,
|
|
const std::vector<float> &sorted_column,
|
|
const std::vector<float> &sorted_weights,
|
|
int num_bins) {
|
|
std::map<int, int> bin_weights;
|
|
for (auto i = 0ull; i < sorted_column.size(); i++) {
|
|
bin_weights[cuts.SearchBin(sorted_column[i], column_idx)] += sorted_weights[i];
|
|
}
|
|
int local_num_bins = cuts.Ptrs()[column_idx + 1] - cuts.Ptrs()[column_idx];
|
|
auto total_weight = std::accumulate(sorted_weights.begin(), sorted_weights.end(),0);
|
|
int expected_bin_weight = total_weight / local_num_bins;
|
|
// Allow up to 30% deviation. This test is not very strict, it only ensures
|
|
// roughly equal distribution
|
|
int allowable_error = std::max(2, int(expected_bin_weight * 0.3));
|
|
|
|
// First and last bin can have smaller
|
|
for (auto& kv : bin_weights) {
|
|
ASSERT_LE(std::abs(bin_weights[kv.first] - expected_bin_weight),
|
|
allowable_error);
|
|
}
|
|
}
|
|
|
|
// Test sketch quantiles against the real quantiles Not a very strict
|
|
// test
|
|
inline void TestRank(const std::vector<float> &column_cuts,
|
|
const std::vector<float> &sorted_x,
|
|
const std::vector<float> &sorted_weights) {
|
|
double eps = 0.05;
|
|
auto total_weight =
|
|
std::accumulate(sorted_weights.begin(), sorted_weights.end(), 0.0);
|
|
// Ignore the last cut, its special
|
|
double sum_weight = 0.0;
|
|
size_t j = 0;
|
|
for (size_t i = 0; i < column_cuts.size() - 1; i++) {
|
|
while (column_cuts[i] > sorted_x[j]) {
|
|
sum_weight += sorted_weights[j];
|
|
j++;
|
|
}
|
|
double expected_rank = ((i + 1) * total_weight) / column_cuts.size();
|
|
double acceptable_error = std::max(2.9, total_weight * eps);
|
|
EXPECT_LE(std::abs(expected_rank - sum_weight), acceptable_error);
|
|
}
|
|
}
|
|
|
|
inline void ValidateColumn(const HistogramCuts& cuts, int column_idx,
|
|
const std::vector<float>& sorted_column,
|
|
const std::vector<float>& sorted_weights,
|
|
size_t num_bins) {
|
|
|
|
// Check the endpoints are correct
|
|
CHECK_GT(sorted_column.size(), 0);
|
|
EXPECT_LT(cuts.MinValues().at(column_idx), sorted_column.front());
|
|
EXPECT_GT(cuts.Values()[cuts.Ptrs()[column_idx]], sorted_column.front());
|
|
EXPECT_GE(cuts.Values()[cuts.Ptrs()[column_idx+1]-1], sorted_column.back());
|
|
|
|
// Check the cuts are sorted
|
|
auto cuts_begin = cuts.Values().begin() + cuts.Ptrs()[column_idx];
|
|
auto cuts_end = cuts.Values().begin() + cuts.Ptrs()[column_idx + 1];
|
|
EXPECT_TRUE(std::is_sorted(cuts_begin, cuts_end));
|
|
|
|
// Check all cut points are unique
|
|
EXPECT_EQ(std::set<float>(cuts_begin, cuts_end).size(),
|
|
static_cast<size_t>(cuts_end - cuts_begin));
|
|
|
|
auto unique = std::set<float>(sorted_column.begin(), sorted_column.end());
|
|
if (unique.size() <= num_bins) {
|
|
// Less unique values than number of bins
|
|
// Each value should get its own bin
|
|
int i = 0;
|
|
for (auto v : unique) {
|
|
ASSERT_EQ(cuts.SearchBin(v, column_idx), cuts.Ptrs()[column_idx] + i);
|
|
i++;
|
|
}
|
|
} else {
|
|
int num_cuts_column = cuts.Ptrs()[column_idx + 1] - cuts.Ptrs()[column_idx];
|
|
std::vector<float> column_cuts(num_cuts_column);
|
|
std::copy(cuts.Values().begin() + cuts.Ptrs()[column_idx],
|
|
cuts.Values().begin() + cuts.Ptrs()[column_idx + 1],
|
|
column_cuts.begin());
|
|
TestBinDistribution(cuts, column_idx, sorted_column, sorted_weights, num_bins);
|
|
TestRank(column_cuts, sorted_column, sorted_weights);
|
|
}
|
|
}
|
|
|
|
inline void ValidateCuts(const HistogramCuts& cuts, DMatrix* dmat,
|
|
int num_bins) {
|
|
// Collect data into columns
|
|
std::vector<std::vector<float>> columns(dmat->Info().num_col_);
|
|
for (auto& batch : dmat->GetBatches<SparsePage>()) {
|
|
auto page = batch.GetView();
|
|
ASSERT_GT(batch.Size(), 0ul);
|
|
for (auto i = 0ull; i < batch.Size(); i++) {
|
|
for (auto e : page[i]) {
|
|
columns[e.index].push_back(e.fvalue);
|
|
}
|
|
}
|
|
}
|
|
// Sort
|
|
for (auto i = 0ull; i < columns.size(); i++) {
|
|
auto& col = columns.at(i);
|
|
const auto& w = dmat->Info().weights_.HostVector();
|
|
std::vector<size_t > index(col.size());
|
|
std::iota(index.begin(), index.end(), 0);
|
|
std::sort(index.begin(), index.end(),
|
|
[=](size_t a, size_t b) { return col[a] < col[b]; });
|
|
|
|
std::vector<float> sorted_column(col.size());
|
|
std::vector<float> sorted_weights(col.size(), 1.0);
|
|
for (auto j = 0ull; j < col.size(); j++) {
|
|
sorted_column[j] = col[index[j]];
|
|
if (w.size() == col.size()) {
|
|
sorted_weights[j] = w[index[j]];
|
|
}
|
|
}
|
|
|
|
ValidateColumn(cuts, i, sorted_column, sorted_weights, num_bins);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Test for sketching on categorical data.
|
|
*
|
|
* \param sketch Sketch function, can be on device or on host.
|
|
*/
|
|
template <typename Fn>
|
|
void TestCategoricalSketch(size_t n, size_t num_categories, int32_t num_bins,
|
|
bool weighted, Fn sketch) {
|
|
auto x = GenerateRandomCategoricalSingleColumn(n, num_categories);
|
|
auto dmat = GetDMatrixFromData(x, n, 1);
|
|
dmat->Info().feature_types.HostVector().push_back(FeatureType::kCategorical);
|
|
|
|
if (weighted) {
|
|
std::vector<float> weights(n, 0);
|
|
SimpleLCG lcg;
|
|
SimpleRealUniformDistribution<float> dist(0, 1);
|
|
for (auto& v : weights) {
|
|
v = dist(&lcg);
|
|
}
|
|
dmat->Info().weights_.HostVector() = weights;
|
|
}
|
|
|
|
ASSERT_EQ(dmat->Info().feature_types.Size(), 1);
|
|
auto cuts = sketch(dmat.get(), num_bins);
|
|
std::sort(x.begin(), x.end());
|
|
auto n_uniques = std::unique(x.begin(), x.end()) - x.begin();
|
|
ASSERT_NE(n_uniques, x.size());
|
|
ASSERT_EQ(cuts.TotalBins(), n_uniques);
|
|
ASSERT_EQ(n_uniques, num_categories);
|
|
|
|
auto& values = cuts.cut_values_.HostVector();
|
|
ASSERT_TRUE(std::is_sorted(values.cbegin(), values.cend()));
|
|
auto is_unique = (std::unique(values.begin(), values.end()) - values.begin()) == n_uniques;
|
|
ASSERT_TRUE(is_unique);
|
|
|
|
x.resize(n_uniques);
|
|
for (decltype(n_uniques) i = 0; i < n_uniques; ++i) {
|
|
ASSERT_EQ(x[i], values[i]);
|
|
}
|
|
}
|
|
} // namespace common
|
|
} // namespace xgboost
|