* Deprecate `reg:linear' in favor of `reg:squarederror'. * Replace the use of `reg:linear'. * Replace the use of `silent`.
78 lines
2.8 KiB
Python
78 lines
2.8 KiB
Python
import xgboost as xgb
|
|
import testing as tm
|
|
import numpy as np
|
|
import unittest
|
|
import pytest
|
|
|
|
rng = np.random.RandomState(1994)
|
|
|
|
|
|
class TestEarlyStopping(unittest.TestCase):
|
|
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
def test_early_stopping_nonparallel(self):
|
|
from sklearn.datasets import load_digits
|
|
try:
|
|
from sklearn.model_selection import train_test_split
|
|
except ImportError:
|
|
from sklearn.cross_validation import train_test_split
|
|
|
|
digits = load_digits(2)
|
|
X = digits['data']
|
|
y = digits['target']
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
|
random_state=0)
|
|
clf1 = xgb.XGBClassifier()
|
|
clf1.fit(X_train, y_train, early_stopping_rounds=5, eval_metric="auc",
|
|
eval_set=[(X_test, y_test)])
|
|
clf2 = xgb.XGBClassifier()
|
|
clf2.fit(X_train, y_train, early_stopping_rounds=4, eval_metric="auc",
|
|
eval_set=[(X_test, y_test)])
|
|
# should be the same
|
|
assert clf1.best_score == clf2.best_score
|
|
assert clf1.best_score != 1
|
|
# check overfit
|
|
clf3 = xgb.XGBClassifier()
|
|
clf3.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",
|
|
eval_set=[(X_test, y_test)])
|
|
assert clf3.best_score == 1
|
|
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
def evalerror(self, preds, dtrain):
|
|
from sklearn.metrics import mean_squared_error
|
|
|
|
labels = dtrain.get_label()
|
|
return 'rmse', mean_squared_error(labels, preds)
|
|
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
def test_cv_early_stopping(self):
|
|
from sklearn.datasets import load_digits
|
|
|
|
digits = load_digits(2)
|
|
X = digits['data']
|
|
y = digits['target']
|
|
dm = xgb.DMatrix(X, label=y)
|
|
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
|
'objective': 'binary:logistic'}
|
|
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
early_stopping_rounds=10)
|
|
assert cv.shape[0] == 10
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
early_stopping_rounds=5)
|
|
assert cv.shape[0] == 3
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
early_stopping_rounds=1)
|
|
assert cv.shape[0] == 1
|
|
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
feval=self.evalerror, early_stopping_rounds=10)
|
|
assert cv.shape[0] == 10
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
feval=self.evalerror, early_stopping_rounds=1)
|
|
assert cv.shape[0] == 5
|
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
|
feval=self.evalerror, maximize=True,
|
|
early_stopping_rounds=1)
|
|
assert cv.shape[0] == 1
|