xgboost/src/predictor/cpu_predictor.cc
Jiaming Yuan c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00

367 lines
15 KiB
C++

/*!
* Copyright by Contributors 2017
*/
#include <xgboost/predictor.h>
#include <xgboost/tree_model.h>
#include <xgboost/tree_updater.h>
#include "dmlc/logging.h"
#include "../common/host_device_vector.h"
namespace xgboost {
namespace predictor {
DMLC_REGISTRY_FILE_TAG(cpu_predictor);
class CPUPredictor : public Predictor {
protected:
static bst_float PredValue(const SparsePage::Inst& inst,
const std::vector<std::unique_ptr<RegTree>>& trees,
const std::vector<int>& tree_info, int bst_group,
unsigned root_index, RegTree::FVec* p_feats,
unsigned tree_begin, unsigned tree_end) {
bst_float psum = 0.0f;
p_feats->Fill(inst);
for (size_t i = tree_begin; i < tree_end; ++i) {
if (tree_info[i] == bst_group) {
int tid = trees[i]->GetLeafIndex(*p_feats, root_index);
psum += (*trees[i])[tid].LeafValue();
}
}
p_feats->Drop(inst);
return psum;
}
// init thread buffers
inline void InitThreadTemp(int nthread, int num_feature) {
int prev_thread_temp_size = thread_temp.size();
if (prev_thread_temp_size < nthread) {
thread_temp.resize(nthread, RegTree::FVec());
for (int i = prev_thread_temp_size; i < nthread; ++i) {
thread_temp[i].Init(num_feature);
}
}
}
inline void PredLoopSpecalize(DMatrix* p_fmat,
std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, int num_group,
unsigned tree_begin, unsigned tree_end) {
const MetaInfo& info = p_fmat->Info();
const int nthread = omp_get_max_threads();
InitThreadTemp(nthread, model.param.num_feature);
std::vector<bst_float>& preds = *out_preds;
CHECK_EQ(model.param.size_leaf_vector, 0)
<< "size_leaf_vector is enforced to 0 so far";
CHECK_EQ(preds.size(), p_fmat->Info().num_row_ * num_group);
// start collecting the prediction
for (const auto &batch : p_fmat->GetRowBatches()) {
// parallel over local batch
constexpr int kUnroll = 8;
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
const bst_omp_uint rest = nsize % kUnroll;
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize - rest; i += kUnroll) {
const int tid = omp_get_thread_num();
RegTree::FVec& feats = thread_temp[tid];
int64_t ridx[kUnroll];
SparsePage::Inst inst[kUnroll];
for (int k = 0; k < kUnroll; ++k) {
ridx[k] = static_cast<int64_t>(batch.base_rowid + i + k);
}
for (int k = 0; k < kUnroll; ++k) {
inst[k] = batch[i + k];
}
for (int k = 0; k < kUnroll; ++k) {
for (int gid = 0; gid < num_group; ++gid) {
const size_t offset = ridx[k] * num_group + gid;
preds[offset] += this->PredValue(
inst[k], model.trees, model.tree_info, gid,
info.GetRoot(ridx[k]), &feats, tree_begin, tree_end);
}
}
}
for (bst_omp_uint i = nsize - rest; i < nsize; ++i) {
RegTree::FVec& feats = thread_temp[0];
const auto ridx = static_cast<int64_t>(batch.base_rowid + i);
auto inst = batch[i];
for (int gid = 0; gid < num_group; ++gid) {
const size_t offset = ridx * num_group + gid;
preds[offset] +=
this->PredValue(inst, model.trees, model.tree_info, gid,
info.GetRoot(ridx), &feats, tree_begin, tree_end);
}
}
}
}
void PredLoopInternal(DMatrix* dmat, std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, int tree_begin,
unsigned ntree_limit) {
// TODO(Rory): Check if this specialisation actually improves performance
PredLoopSpecalize(dmat, out_preds, model, model.param.num_output_group,
tree_begin, ntree_limit);
}
bool PredictFromCache(DMatrix* dmat,
HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model,
unsigned ntree_limit) {
if (ntree_limit == 0 ||
ntree_limit * model.param.num_output_group >= model.trees.size()) {
auto it = cache_.find(dmat);
if (it != cache_.end()) {
const HostDeviceVector<bst_float>& y = it->second.predictions;
if (y.Size() != 0) {
out_preds->Resize(y.Size());
std::copy(y.HostVector().begin(), y.HostVector().end(),
out_preds->HostVector().begin());
return true;
}
}
}
return false;
}
void InitOutPredictions(const MetaInfo& info,
HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model) const {
size_t n = model.param.num_output_group * info.num_row_;
const auto& base_margin = info.base_margin_.HostVector();
out_preds->Resize(n);
std::vector<bst_float>& out_preds_h = out_preds->HostVector();
if (base_margin.size() == n) {
CHECK_EQ(out_preds->Size(), n);
std::copy(base_margin.begin(), base_margin.end(), out_preds_h.begin());
} else {
if (!base_margin.empty()) {
std::ostringstream oss;
oss << "Warning: Ignoring the base margin, since it has incorrect length. "
<< "The base margin must be an array of length ";
if (model.param.num_output_group > 1) {
oss << "[num_class] * [number of data points], i.e. "
<< model.param.num_output_group << " * " << info.num_row_
<< " = " << n << ". ";
} else {
oss << "[number of data points], i.e. " << info.num_row_ << ". ";
}
oss << "Instead, all data points will use "
<< "base_score = " << model.base_margin;
LOG(INFO) << oss.str();
}
std::fill(out_preds_h.begin(), out_preds_h.end(), model.base_margin);
}
}
public:
void PredictBatch(DMatrix* dmat, HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model, int tree_begin,
unsigned ntree_limit = 0) override {
if (this->PredictFromCache(dmat, out_preds, model, ntree_limit)) {
return;
}
this->InitOutPredictions(dmat->Info(), out_preds, model);
ntree_limit *= model.param.num_output_group;
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
ntree_limit = static_cast<unsigned>(model.trees.size());
}
this->PredLoopInternal(dmat, &out_preds->HostVector(), model,
tree_begin, ntree_limit);
}
void UpdatePredictionCache(
const gbm::GBTreeModel& model,
std::vector<std::unique_ptr<TreeUpdater>>* updaters,
int num_new_trees) override {
int old_ntree = model.trees.size() - num_new_trees;
// update cache entry
for (auto& kv : cache_) {
PredictionCacheEntry& e = kv.second;
if (e.predictions.Size() == 0) {
InitOutPredictions(e.data->Info(), &(e.predictions), model);
PredLoopInternal(e.data.get(), &(e.predictions.HostVector()), model, 0,
model.trees.size());
} else if (model.param.num_output_group == 1 && updaters->size() > 0 &&
num_new_trees == 1 &&
updaters->back()->UpdatePredictionCache(e.data.get(),
&(e.predictions))) {
{} // do nothing
} else {
PredLoopInternal(e.data.get(), &(e.predictions.HostVector()), model, old_ntree,
model.trees.size());
}
}
}
void PredictInstance(const SparsePage::Inst& inst,
std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit,
unsigned root_index) override {
if (thread_temp.size() == 0) {
thread_temp.resize(1, RegTree::FVec());
thread_temp[0].Init(model.param.num_feature);
}
ntree_limit *= model.param.num_output_group;
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
ntree_limit = static_cast<unsigned>(model.trees.size());
}
out_preds->resize(model.param.num_output_group *
(model.param.size_leaf_vector + 1));
// loop over output groups
for (int gid = 0; gid < model.param.num_output_group; ++gid) {
(*out_preds)[gid] =
PredValue(inst, model.trees, model.tree_info, gid, root_index,
&thread_temp[0], 0, ntree_limit) +
model.base_margin;
}
}
void PredictLeaf(DMatrix* p_fmat, std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit) override {
const int nthread = omp_get_max_threads();
InitThreadTemp(nthread, model.param.num_feature);
const MetaInfo& info = p_fmat->Info();
// number of valid trees
ntree_limit *= model.param.num_output_group;
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
ntree_limit = static_cast<unsigned>(model.trees.size());
}
std::vector<bst_float>& preds = *out_preds;
preds.resize(info.num_row_ * ntree_limit);
// start collecting the prediction
for (const auto &batch : p_fmat->GetRowBatches()) {
// parallel over local batch
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
const int tid = omp_get_thread_num();
auto ridx = static_cast<size_t>(batch.base_rowid + i);
RegTree::FVec& feats = thread_temp[tid];
feats.Fill(batch[i]);
for (unsigned j = 0; j < ntree_limit; ++j) {
int tid = model.trees[j]->GetLeafIndex(feats, info.GetRoot(ridx));
preds[ridx * ntree_limit + j] = static_cast<bst_float>(tid);
}
feats.Drop(batch[i]);
}
}
}
void PredictContribution(DMatrix* p_fmat, std::vector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, unsigned ntree_limit,
bool approximate,
int condition,
unsigned condition_feature) override {
const int nthread = omp_get_max_threads();
InitThreadTemp(nthread, model.param.num_feature);
const MetaInfo& info = p_fmat->Info();
// number of valid trees
ntree_limit *= model.param.num_output_group;
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
ntree_limit = static_cast<unsigned>(model.trees.size());
}
const int ngroup = model.param.num_output_group;
size_t ncolumns = model.param.num_feature + 1;
// allocate space for (number of features + bias) times the number of rows
std::vector<bst_float>& contribs = *out_contribs;
contribs.resize(info.num_row_ * ncolumns * model.param.num_output_group);
// make sure contributions is zeroed, we could be reusing a previously
// allocated one
std::fill(contribs.begin(), contribs.end(), 0);
// initialize tree node mean values
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < ntree_limit; ++i) {
model.trees[i]->FillNodeMeanValues();
}
const std::vector<bst_float>& base_margin = info.base_margin_.HostVector();
// start collecting the contributions
for (const auto &batch : p_fmat->GetRowBatches()) {
// parallel over local batch
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
unsigned root_id = info.GetRoot(row_idx);
RegTree::FVec& feats = thread_temp[omp_get_thread_num()];
// loop over all classes
for (int gid = 0; gid < ngroup; ++gid) {
bst_float* p_contribs =
&contribs[(row_idx * ngroup + gid) * ncolumns];
feats.Fill(batch[i]);
// calculate contributions
for (unsigned j = 0; j < ntree_limit; ++j) {
if (model.tree_info[j] != gid) {
continue;
}
if (!approximate) {
model.trees[j]->CalculateContributions(feats, root_id, p_contribs,
condition, condition_feature);
} else {
model.trees[j]->CalculateContributionsApprox(feats, root_id, p_contribs);
}
}
feats.Drop(batch[i]);
// add base margin to BIAS
if (base_margin.size() != 0) {
p_contribs[ncolumns - 1] += base_margin[row_idx * ngroup + gid];
} else {
p_contribs[ncolumns - 1] += model.base_margin;
}
}
}
}
}
void PredictInteractionContributions(DMatrix* p_fmat, std::vector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, unsigned ntree_limit,
bool approximate) override {
const MetaInfo& info = p_fmat->Info();
const int ngroup = model.param.num_output_group;
size_t ncolumns = model.param.num_feature;
const unsigned row_chunk = ngroup * (ncolumns + 1) * (ncolumns + 1);
const unsigned mrow_chunk = (ncolumns + 1) * (ncolumns + 1);
const unsigned crow_chunk = ngroup * (ncolumns + 1);
// allocate space for (number of features^2) times the number of rows and tmp off/on contribs
std::vector<bst_float>& contribs = *out_contribs;
contribs.resize(info.num_row_ * ngroup * (ncolumns + 1) * (ncolumns + 1));
std::vector<bst_float> contribs_off(info.num_row_ * ngroup * (ncolumns + 1));
std::vector<bst_float> contribs_on(info.num_row_ * ngroup * (ncolumns + 1));
std::vector<bst_float> contribs_diag(info.num_row_ * ngroup * (ncolumns + 1));
// Compute the difference in effects when conditioning on each of the features on and off
// see: Axiomatic characterizations of probabilistic and
// cardinal-probabilistic interaction indices
PredictContribution(p_fmat, &contribs_diag, model, ntree_limit, approximate, 0, 0);
for (size_t i = 0; i < ncolumns + 1; ++i) {
PredictContribution(p_fmat, &contribs_off, model, ntree_limit, approximate, -1, i);
PredictContribution(p_fmat, &contribs_on, model, ntree_limit, approximate, 1, i);
for (size_t j = 0; j < info.num_row_; ++j) {
for (int l = 0; l < ngroup; ++l) {
const unsigned o_offset = j * row_chunk + l * mrow_chunk + i * (ncolumns + 1);
const unsigned c_offset = j * crow_chunk + l * (ncolumns + 1);
contribs[o_offset + i] = 0;
for (size_t k = 0; k < ncolumns + 1; ++k) {
// fill in the diagonal with additive effects, and off-diagonal with the interactions
if (k == i) {
contribs[o_offset + i] += contribs_diag[c_offset + k];
} else {
contribs[o_offset + k] = (contribs_on[c_offset + k] - contribs_off[c_offset + k])/2.0;
contribs[o_offset + i] -= contribs[o_offset + k];
}
}
}
}
}
}
std::vector<RegTree::FVec> thread_temp;
};
XGBOOST_REGISTER_PREDICTOR(CPUPredictor, "cpu_predictor")
.describe("Make predictions using CPU.")
.set_body([]() { return new CPUPredictor(); });
} // namespace predictor
} // namespace xgboost