xgboost/tests/python-gpu/test_gpu_prediction.py
Rory Mitchell 9c85903f0b Add GPU documentation (#2695)
* Add GPU documentation

* Update Python GPU tests
2017-09-10 19:42:46 +12:00

36 lines
1.3 KiB
Python

from __future__ import print_function
import numpy as np
import unittest
import xgboost as xgb
from nose.plugins.attrib import attr
rng = np.random.RandomState(1994)
@attr('gpu')
class TestGPUPredict(unittest.TestCase):
def test_predict(self):
iterations = 1
np.random.seed(1)
test_num_rows = [10, 1000, 5000]
test_num_cols = [10, 50, 500]
for num_rows in test_num_rows:
for num_cols in test_num_cols:
dm = xgb.DMatrix(np.random.randn(num_rows, num_cols), label=[0, 1] * int(num_rows / 2))
watchlist = [(dm, 'train')]
res = {}
param = {
"objective": "binary:logistic",
"predictor": "gpu_predictor",
'eval_metric': 'auc',
}
bst = xgb.train(param, dm, iterations, evals=watchlist, evals_result=res)
assert self.non_decreasing(res["train"]["auc"])
gpu_pred = bst.predict(dm, output_margin=True)
bst.set_param({"predictor": "cpu_predictor"})
cpu_pred = bst.predict(dm, output_margin=True)
np.testing.assert_allclose(cpu_pred, gpu_pred, rtol=1e-5)
def non_decreasing(self, L):
return all((x - y) < 0.001 for x, y in zip(L, L[1:]))