xgboost/tests/ci_build/Dockerfile.jvm_gpu_build
Bobby Wang 0ee11dac77
[jvm-packages][xgboost4j-gpu] Support GPU dataframe and DeviceQuantileDMatrix (#7195)
Following classes are added to support dataframe in java binding:

- `Column` is an abstract type for a single column in tabular data.
- `ColumnBatch` is an abstract type for dataframe.

- `CuDFColumn` is an implementaiton of `Column` that consume cuDF column
- `CudfColumnBatch` is an implementation of `ColumnBatch` that consumes cuDF dataframe.

- `DeviceQuantileDMatrix` is the interface for quantized data.

The Java implementation mimics the Python interface and uses `__cuda_array_interface__` protocol for memory indexing.  One difference is on JVM package, the data batch is staged on the host as java iterators cannot be reset.

Co-authored-by: jiamingy <jm.yuan@outlook.com>
2021-09-24 14:25:00 +08:00

55 lines
2.4 KiB
Docker

ARG CUDA_VERSION_ARG
FROM nvidia/cuda:$CUDA_VERSION_ARG-devel-centos7
ARG CUDA_VERSION_ARG
# Install all basic requirements
RUN \
yum install -y epel-release centos-release-scl && \
yum-config-manager --enable centos-sclo-rh-testing && \
yum -y update && \
yum install -y tar unzip wget xz git which ninja-build java-1.8.0-openjdk-devel devtoolset-8-gcc devtoolset-8-binutils devtoolset-8-gcc-c++ && \
# Python
wget -nv -nc -O Miniconda3.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
bash Miniconda3.sh -b -p /opt/python && \
# CMake
wget -nv -nc https://cmake.org/files/v3.14/cmake-3.14.0-Linux-x86_64.sh --no-check-certificate && \
bash cmake-3.14.0-Linux-x86_64.sh --skip-license --prefix=/usr && \
# Maven
wget -nv -nc https://archive.apache.org/dist/maven/maven-3/3.6.1/binaries/apache-maven-3.6.1-bin.tar.gz && \
tar xvf apache-maven-3.6.1-bin.tar.gz -C /opt && \
ln -s /opt/apache-maven-3.6.1/ /opt/maven
# NCCL2 (License: https://docs.nvidia.com/deeplearning/sdk/nccl-sla/index.html)
RUN \
export CUDA_SHORT=`echo $CUDA_VERSION_ARG | grep -o -E '[0-9]+\.[0-9]'` && \
export NCCL_VERSION=2.8.3-1 && \
wget -nv -nc https://developer.download.nvidia.com/compute/machine-learning/repos/rhel7/x86_64/nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm && \
rpm -i nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm && \
yum -y update && \
yum install -y libnccl-${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-devel-${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-static-${NCCL_VERSION}+cuda${CUDA_SHORT} && \
rm -f nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm;
ENV PATH=/opt/python/bin:/opt/maven/bin:$PATH
ENV CC=/opt/rh/devtoolset-8/root/usr/bin/gcc
ENV CXX=/opt/rh/devtoolset-8/root/usr/bin/c++
ENV CPP=/opt/rh/devtoolset-8/root/usr/bin/cpp
# Install Python packages
RUN \
pip install numpy pytest scipy scikit-learn wheel kubernetes awscli
ENV GOSU_VERSION 1.10
# Install lightweight sudo (not bound to TTY)
RUN set -ex; \
wget -nv -nc -O /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-amd64" && \
chmod +x /usr/local/bin/gosu && \
gosu nobody true
# Default entry-point to use if running locally
# It will preserve attributes of created files
COPY entrypoint.sh /scripts/
WORKDIR /workspace
ENTRYPOINT ["/scripts/entrypoint.sh"]