xgboost/tests/cpp/predictor/test_predictor.h
2023-03-14 19:07:10 +08:00

84 lines
2.9 KiB
C++

/**
* Copyright 2020-2023 by XGBoost Contributors
*/
#ifndef XGBOOST_TEST_PREDICTOR_H_
#define XGBOOST_TEST_PREDICTOR_H_
#include <xgboost/context.h> // for Context
#include <xgboost/predictor.h>
#include <cstddef>
#include <string>
#include "../../../src/gbm/gbtree_model.h" // for GBTreeModel
#include "../helpers.h"
namespace xgboost {
template <typename Page>
void TestPredictionFromGradientIndex(std::string name, size_t rows, size_t cols,
std::shared_ptr<DMatrix> p_hist) {
constexpr size_t kClasses { 3 };
LearnerModelParam mparam{MakeMP(cols, .5, kClasses)};
auto lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> predictor =
std::unique_ptr<Predictor>(Predictor::Create(name, &lparam));
predictor->Configure({});
Context ctx;
ctx.UpdateAllowUnknown(Args{});
gbm::GBTreeModel model = CreateTestModel(&mparam, &ctx, kClasses);
{
auto p_precise = RandomDataGenerator(rows, cols, 0).GenerateDMatrix();
PredictionCacheEntry approx_out_predictions;
predictor->InitOutPredictions(p_hist->Info(), &approx_out_predictions.predictions, model);
predictor->PredictBatch(p_hist.get(), &approx_out_predictions, model, 0);
PredictionCacheEntry precise_out_predictions;
predictor->InitOutPredictions(p_precise->Info(), &precise_out_predictions.predictions, model);
predictor->PredictBatch(p_precise.get(), &precise_out_predictions, model, 0);
for (size_t i = 0; i < rows; ++i) {
CHECK_EQ(approx_out_predictions.predictions.HostVector()[i],
precise_out_predictions.predictions.HostVector()[i]);
}
}
{
// Predictor should never try to create the histogram index by itself. As only
// histogram index from training data is valid and predictor doesn't known which
// matrix is used for training.
auto p_dmat = RandomDataGenerator(rows, cols, 0).GenerateDMatrix();
PredictionCacheEntry precise_out_predictions;
predictor->InitOutPredictions(p_dmat->Info(), &precise_out_predictions.predictions, model);
predictor->PredictBatch(p_dmat.get(), &precise_out_predictions, model, 0);
CHECK(!p_dmat->PageExists<Page>());
}
}
// p_full and p_hist should come from the same data set.
void TestTrainingPrediction(size_t rows, size_t bins, std::string tree_method,
std::shared_ptr<DMatrix> p_full,
std::shared_ptr<DMatrix> p_hist);
void TestInplacePrediction(std::shared_ptr<DMatrix> x, std::string predictor, bst_row_t rows,
bst_feature_t cols, int32_t device = -1);
void TestPredictionWithLesserFeatures(std::string preditor_name);
void TestCategoricalPrediction(std::string name);
void TestCategoricalPredictLeaf(StringView name);
void TestIterationRange(std::string name);
void TestSparsePrediction(float sparsity, std::string predictor);
void TestVectorLeafPrediction(Context const* ctx);
} // namespace xgboost
#endif // XGBOOST_TEST_PREDICTOR_H_