xgboost/tests/cpp/data/test_simple_dmatrix.cc
Jiaming Yuan fe8d72b50b
Cleanup warnings. (#5247)
From clang-tidy-9 and gcc-7: Invalid case style, narrowing definition, wrong
initialization order, unused variables.
2020-01-31 14:52:15 +08:00

257 lines
8.7 KiB
C++

// Copyright by Contributors
#include <dmlc/filesystem.h>
#include <xgboost/data.h>
#include "../../../src/data/simple_dmatrix.h"
#include "../../../src/data/adapter.h"
#include "../helpers.h"
using namespace xgboost; // NOLINT
TEST(SimpleDMatrix, MetaInfo) {
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/simple.libsvm";
CreateSimpleTestData(tmp_file);
xgboost::DMatrix *dmat = xgboost::DMatrix::Load(tmp_file, true, false);
// Test the metadata that was parsed
EXPECT_EQ(dmat->Info().num_row_, 2);
EXPECT_EQ(dmat->Info().num_col_, 5);
EXPECT_EQ(dmat->Info().num_nonzero_, 6);
EXPECT_EQ(dmat->Info().labels_.Size(), dmat->Info().num_row_);
delete dmat;
}
TEST(SimpleDMatrix, RowAccess) {
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/simple.libsvm";
CreateSimpleTestData(tmp_file);
xgboost::DMatrix *dmat = xgboost::DMatrix::Load(tmp_file, false, false);
// Loop over the batches and count the records
int64_t row_count = 0;
for (auto &batch : dmat->GetBatches<xgboost::SparsePage>()) {
row_count += batch.Size();
}
EXPECT_EQ(row_count, dmat->Info().num_row_);
// Test the data read into the first row
auto &batch = *dmat->GetBatches<xgboost::SparsePage>().begin();
auto first_row = batch[0];
ASSERT_EQ(first_row.size(), 3);
EXPECT_EQ(first_row[2].index, 2);
EXPECT_EQ(first_row[2].fvalue, 20);
delete dmat;
}
TEST(SimpleDMatrix, ColAccessWithoutBatches) {
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/simple.libsvm";
CreateSimpleTestData(tmp_file);
xgboost::DMatrix *dmat = xgboost::DMatrix::Load(tmp_file, true, false);
// Sorted column access
EXPECT_EQ(dmat->GetColDensity(0), 1);
EXPECT_EQ(dmat->GetColDensity(1), 0.5);
ASSERT_TRUE(dmat->SingleColBlock());
// Loop over the batches and assert the data is as expected
int64_t num_col_batch = 0;
for (const auto &batch : dmat->GetBatches<xgboost::SortedCSCPage>()) {
num_col_batch += 1;
EXPECT_EQ(batch.Size(), dmat->Info().num_col_)
<< "Expected batch size = number of cells as #batches is 1.";
}
EXPECT_EQ(num_col_batch, 1) << "Expected number of batches to be 1";
delete dmat;
}
TEST(SimpleDMatrix, Empty) {
std::vector<float> data{};
std::vector<unsigned> feature_idx = {};
std::vector<size_t> row_ptr = {};
data::CSRAdapter csr_adapter(row_ptr.data(), feature_idx.data(), data.data(),
0, 0, 0);
data::SimpleDMatrix dmat(&csr_adapter,
std::numeric_limits<float>::quiet_NaN(), 1);
CHECK_EQ(dmat.Info().num_nonzero_, 0);
CHECK_EQ(dmat.Info().num_row_, 0);
CHECK_EQ(dmat.Info().num_col_, 0);
for (auto &batch : dmat.GetBatches<SparsePage>()) {
CHECK_EQ(batch.Size(), 0);
}
data::DenseAdapter dense_adapter(nullptr, 0, 0);
dmat = data::SimpleDMatrix(&dense_adapter,
std::numeric_limits<float>::quiet_NaN(), 1);
CHECK_EQ(dmat.Info().num_nonzero_, 0);
CHECK_EQ(dmat.Info().num_row_, 0);
CHECK_EQ(dmat.Info().num_col_, 0);
for (auto &batch : dmat.GetBatches<SparsePage>()) {
CHECK_EQ(batch.Size(), 0);
}
data::CSCAdapter csc_adapter(nullptr, nullptr, nullptr, 0, 0);
dmat = data::SimpleDMatrix(&csc_adapter,
std::numeric_limits<float>::quiet_NaN(), 1);
CHECK_EQ(dmat.Info().num_nonzero_, 0);
CHECK_EQ(dmat.Info().num_row_, 0);
CHECK_EQ(dmat.Info().num_col_, 0);
for (auto &batch : dmat.GetBatches<SparsePage>()) {
CHECK_EQ(batch.Size(), 0);
}
}
TEST(SimpleDMatrix, MissingData) {
std::vector<float> data{0.0, std::nanf(""), 1.0};
std::vector<unsigned> feature_idx = {0, 1, 0};
std::vector<size_t> row_ptr = {0, 2, 3};
data::CSRAdapter adapter(row_ptr.data(), feature_idx.data(), data.data(), 2,
3, 2);
data::SimpleDMatrix dmat(&adapter, std::numeric_limits<float>::quiet_NaN(),
1);
CHECK_EQ(dmat.Info().num_nonzero_, 2);
dmat = data::SimpleDMatrix(&adapter, 1.0, 1);
CHECK_EQ(dmat.Info().num_nonzero_, 1);
}
TEST(SimpleDMatrix, EmptyRow) {
std::vector<float> data{0.0, 1.0};
std::vector<unsigned> feature_idx = {0, 1};
std::vector<size_t> row_ptr = {0, 2, 2};
data::CSRAdapter adapter(row_ptr.data(), feature_idx.data(), data.data(), 2,
2, 2);
data::SimpleDMatrix dmat(&adapter, std::numeric_limits<float>::quiet_NaN(),
1);
CHECK_EQ(dmat.Info().num_nonzero_, 2);
CHECK_EQ(dmat.Info().num_row_, 2);
CHECK_EQ(dmat.Info().num_col_, 2);
}
TEST(SimpleDMatrix, FromDense) {
int m = 3;
int n = 2;
std::vector<float> data = {1, 2, 3, 4, 5, 6};
data::DenseAdapter adapter(data.data(), m, n);
data::SimpleDMatrix dmat(&adapter, std::numeric_limits<float>::quiet_NaN(),
-1);
EXPECT_EQ(dmat.Info().num_col_, 2);
EXPECT_EQ(dmat.Info().num_row_, 3);
EXPECT_EQ(dmat.Info().num_nonzero_, 6);
for (auto &batch : dmat.GetBatches<SparsePage>()) {
for (auto i = 0ull; i < batch.Size(); i++) {
auto inst = batch[i];
for (auto j = 0ull; j < inst.size(); j++) {
EXPECT_EQ(inst[j].fvalue, data[i * n + j]);
EXPECT_EQ(inst[j].index, j);
}
}
}
}
TEST(SimpleDMatrix, FromCSC) {
std::vector<float> data = {1, 3, 2, 4, 5};
std::vector<unsigned> row_idx = {0, 1, 0, 1, 2};
std::vector<size_t> col_ptr = {0, 2, 5};
data::CSCAdapter adapter(col_ptr.data(), row_idx.data(), data.data(), 2, 3);
data::SimpleDMatrix dmat(&adapter, std::numeric_limits<float>::quiet_NaN(),
-1);
EXPECT_EQ(dmat.Info().num_col_, 2);
EXPECT_EQ(dmat.Info().num_row_, 3);
EXPECT_EQ(dmat.Info().num_nonzero_, 5);
auto &batch = *dmat.GetBatches<SparsePage>().begin();
auto inst = batch[0];
EXPECT_EQ(inst[0].fvalue, 1);
EXPECT_EQ(inst[0].index, 0);
EXPECT_EQ(inst[1].fvalue, 2);
EXPECT_EQ(inst[1].index, 1);
inst = batch[1];
EXPECT_EQ(inst[0].fvalue, 3);
EXPECT_EQ(inst[0].index, 0);
EXPECT_EQ(inst[1].fvalue, 4);
EXPECT_EQ(inst[1].index, 1);
inst = batch[2];
EXPECT_EQ(inst[0].fvalue, 5);
EXPECT_EQ(inst[0].index, 1);
}
TEST(SimpleDMatrix, FromFile) {
std::string filename = "test.libsvm";
CreateBigTestData(filename, 3 * 5);
std::unique_ptr<dmlc::Parser<uint32_t>> parser(
dmlc::Parser<uint32_t>::Create(filename.c_str(), 0, 1, "auto"));
data::FileAdapter adapter(parser.get());
data::SimpleDMatrix dmat(&adapter, std::numeric_limits<float>::quiet_NaN(),
1);
for (auto &batch : dmat.GetBatches<SparsePage>()) {
EXPECT_EQ(batch.Size(), 5);
EXPECT_EQ(batch.offset.HostVector(),
std::vector<bst_row_t>({0, 3, 6, 9, 12, 15}));
EXPECT_EQ(batch.base_rowid, 0);
for (auto i = 0ull; i < batch.Size(); i++) {
if (i % 2 == 0) {
EXPECT_EQ(batch[i][0].index, 0);
EXPECT_EQ(batch[i][1].index, 1);
EXPECT_EQ(batch[i][2].index, 2);
} else {
EXPECT_EQ(batch[i][0].index, 0);
EXPECT_EQ(batch[i][1].index, 3);
EXPECT_EQ(batch[i][2].index, 4);
}
}
}
}
TEST(SimpleDMatrix, Slice) {
const int kRows = 6;
const int kCols = 2;
auto pp_dmat = CreateDMatrix(kRows, kCols, 1.0);
auto p_dmat = *pp_dmat;
auto &labels = p_dmat->Info().labels_.HostVector();
auto &weights = p_dmat->Info().weights_.HostVector();
auto &base_margin = p_dmat->Info().base_margin_.HostVector();
weights.resize(kRows);
labels.resize(kRows);
base_margin.resize(kRows);
std::iota(labels.begin(), labels.end(), 0);
std::iota(weights.begin(), weights.end(), 0);
std::iota(base_margin.begin(), base_margin.end(), 0);
std::vector<int> ridx_set = {1, 3, 5};
data::DMatrixSliceAdapter adapter(p_dmat.get(),
{ridx_set.data(), ridx_set.size()});
EXPECT_EQ(adapter.NumRows(), ridx_set.size());
data::SimpleDMatrix new_dmat(&adapter,
std::numeric_limits<float>::quiet_NaN(), 1);
EXPECT_EQ(new_dmat.Info().num_row_, ridx_set.size());
auto &old_batch = *p_dmat->GetBatches<SparsePage>().begin();
auto &new_batch = *new_dmat.GetBatches<SparsePage>().begin();
for (auto i = 0ull; i < ridx_set.size(); i++) {
EXPECT_EQ(new_dmat.Info().labels_.HostVector()[i],
p_dmat->Info().labels_.HostVector()[ridx_set[i]]);
EXPECT_EQ(new_dmat.Info().weights_.HostVector()[i],
p_dmat->Info().weights_.HostVector()[ridx_set[i]]);
EXPECT_EQ(new_dmat.Info().base_margin_.HostVector()[i],
p_dmat->Info().base_margin_.HostVector()[ridx_set[i]]);
auto old_inst = old_batch[ridx_set[i]];
auto new_inst = new_batch[i];
ASSERT_EQ(old_inst.size(), new_inst.size());
for (auto j = 0ull; j < old_inst.size(); j++) {
EXPECT_EQ(old_inst[j], new_inst[j]);
}
}
delete pp_dmat;
};