49 lines
2.0 KiB
R
49 lines
2.0 KiB
R
context('Test generalized linear models')
|
|
|
|
require(xgboost)
|
|
|
|
test_that("gblinear works", {
|
|
data(agaricus.train, package='xgboost')
|
|
data(agaricus.test, package='xgboost')
|
|
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
|
|
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
|
|
|
|
param <- list(objective = "binary:logistic", booster = "gblinear",
|
|
nthread = 2, eta = 0.8, alpha = 0.0001, lambda = 0.0001)
|
|
watchlist <- list(eval = dtest, train = dtrain)
|
|
|
|
n <- 5 # iterations
|
|
ERR_UL <- 0.005 # upper limit for the test set error
|
|
VERB <- 0 # chatterbox switch
|
|
|
|
param$updater = 'shotgun'
|
|
bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'shuffle')
|
|
ypred <- predict(bst, dtest)
|
|
expect_equal(length(getinfo(dtest, 'label')), 1611)
|
|
expect_lt(bst$evaluation_log$eval_error[n], ERR_UL)
|
|
|
|
bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'cyclic',
|
|
callbacks = list(cb.gblinear.history()))
|
|
expect_lt(bst$evaluation_log$eval_error[n], ERR_UL)
|
|
h <- xgb.gblinear.history(bst)
|
|
expect_equal(dim(h), c(n, ncol(dtrain) + 1))
|
|
expect_is(h, "matrix")
|
|
|
|
param$updater = 'coord_descent'
|
|
bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'cyclic')
|
|
expect_lt(bst$evaluation_log$eval_error[n], ERR_UL)
|
|
|
|
bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'shuffle')
|
|
expect_lt(bst$evaluation_log$eval_error[n], ERR_UL)
|
|
|
|
bst <- xgb.train(param, dtrain, 2, watchlist, verbose = VERB, feature_selector = 'greedy')
|
|
expect_lt(bst$evaluation_log$eval_error[2], ERR_UL)
|
|
|
|
bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'thrifty',
|
|
top_k = 50, callbacks = list(cb.gblinear.history(sparse = TRUE)))
|
|
expect_lt(bst$evaluation_log$eval_error[n], ERR_UL)
|
|
h <- xgb.gblinear.history(bst)
|
|
expect_equal(dim(h), c(n, ncol(dtrain) + 1))
|
|
expect_s4_class(h, "dgCMatrix")
|
|
})
|