xgboost/tests/cpp/objective/test_quantile_obj.cc
2023-08-02 14:31:18 +08:00

75 lines
2.4 KiB
C++

/**
* Copyright 2023 by XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/base.h> // Args
#include <xgboost/context.h> // Context
#include <xgboost/objective.h> // ObjFunction
#include <xgboost/span.h> // Span
#include <memory> // std::unique_ptr
#include <vector> // std::vector
#include "../helpers.h" // CheckConfigReload,MakeCUDACtx,DeclareUnifiedTest
namespace xgboost {
TEST(Objective, DeclareUnifiedTest(Quantile)) {
Context ctx = MakeCUDACtx(GetGPUId());
{
Args args{{"quantile_alpha", "[0.6, 0.8]"}};
std::unique_ptr<ObjFunction> obj{ObjFunction::Create("reg:quantileerror", &ctx)};
obj->Configure(args);
CheckConfigReload(obj, "reg:quantileerror");
}
Args args{{"quantile_alpha", "0.6"}};
std::unique_ptr<ObjFunction> obj{ObjFunction::Create("reg:quantileerror", &ctx)};
obj->Configure(args);
CheckConfigReload(obj, "reg:quantileerror");
std::vector<float> predts{1.0f, 2.0f, 3.0f};
std::vector<float> labels{3.0f, 2.0f, 1.0f};
std::vector<float> weights{1.0f, 1.0f, 1.0f};
std::vector<float> grad{-0.6f, 0.4f, 0.4f};
std::vector<float> hess = weights;
CheckObjFunction(obj, predts, labels, weights, grad, hess);
}
TEST(Objective, DeclareUnifiedTest(QuantileIntercept)) {
Context ctx = MakeCUDACtx(GetGPUId());
Args args{{"quantile_alpha", "[0.6, 0.8]"}};
std::unique_ptr<ObjFunction> obj{ObjFunction::Create("reg:quantileerror", &ctx)};
obj->Configure(args);
MetaInfo info;
info.num_row_ = 10;
info.labels.ModifyInplace([&](HostDeviceVector<float>* data, common::Span<std::size_t> shape) {
data->SetDevice(ctx.gpu_id);
data->Resize(info.num_row_);
shape[0] = info.num_row_;
shape[1] = 1;
auto& h_labels = data->HostVector();
for (std::size_t i = 0; i < info.num_row_; ++i) {
h_labels[i] = i;
}
});
linalg::Vector<float> base_scores;
obj->InitEstimation(info, &base_scores);
ASSERT_EQ(base_scores.Size(), 1) << "Vector is not yet supported.";
// mean([5.6, 7.8])
ASSERT_NEAR(base_scores(0), 6.7, kRtEps);
for (std::size_t i = 0; i < info.num_row_; ++i) {
info.weights_.HostVector().emplace_back(info.num_row_ - i - 1.0);
}
obj->InitEstimation(info, &base_scores);
ASSERT_EQ(base_scores.Size(), 1) << "Vector is not yet supported.";
// mean([3, 5])
ASSERT_NEAR(base_scores(0), 4.0, kRtEps);
}
} // namespace xgboost