xgboost/python-package
Jiaming Yuan c2b3a13e70
[breaking][skl] Remove parameter serialization. (#8963)
- Remove parameter serialization in the scikit-learn interface.

The scikit-lear interface `save_model` will save only the model and discard all
hyper-parameters. This is to align with the native XGBoost interface, which distinguishes
the hyper-parameter and model parameters.

With the scikit-learn interface, model parameters are attributes of the estimator. For
instance, `n_features_in_`, `n_classes_` are always accessible with
`estimator.n_features_in_` and `estimator.n_classes_`, but not with the
`estimator.get_params`.

- Define a `load_model` method for classifier to load its own attributes.

- Set n_estimators to None by default.
2023-03-27 21:34:10 +08:00
..
2019-06-11 08:58:41 +08:00
2022-03-31 19:03:10 +08:00

======================
XGBoost Python Package
======================

|PyPI version|

Installation
============

From `PyPI <https://pypi.python.org/pypi/xgboost>`_
---------------------------------------------------

For a stable version, install using ``pip``::

    pip install xgboost

.. |PyPI version| image:: https://badge.fury.io/py/xgboost.svg
   :target: http://badge.fury.io/py/xgboost

For building from source, see `build <https://xgboost.readthedocs.io/en/latest/build.html>`_.