- Remove parameter serialization in the scikit-learn interface. The scikit-lear interface `save_model` will save only the model and discard all hyper-parameters. This is to align with the native XGBoost interface, which distinguishes the hyper-parameter and model parameters. With the scikit-learn interface, model parameters are attributes of the estimator. For instance, `n_features_in_`, `n_classes_` are always accessible with `estimator.n_features_in_` and `estimator.n_classes_`, but not with the `estimator.get_params`. - Define a `load_model` method for classifier to load its own attributes. - Set n_estimators to None by default.
======================
XGBoost Python Package
======================
|PyPI version|
Installation
============
From `PyPI <https://pypi.python.org/pypi/xgboost>`_
---------------------------------------------------
For a stable version, install using ``pip``::
pip install xgboost
.. |PyPI version| image:: https://badge.fury.io/py/xgboost.svg
:target: http://badge.fury.io/py/xgboost
For building from source, see `build <https://xgboost.readthedocs.io/en/latest/build.html>`_.