* Use pre-rounding based method to obtain reproducible floating point summation. * GPU Hist for regression and classification are bit-by-bit reproducible. * Add doc. * Switch to thrust reduce for `node_sum_gradient`.
47 lines
1.6 KiB
Python
47 lines
1.6 KiB
Python
import sys
|
|
import os
|
|
import unittest
|
|
import numpy as np
|
|
import xgboost as xgb
|
|
sys.path.append("tests/python")
|
|
# Don't import the test class, otherwise they will run twice.
|
|
import test_basic_models as test_bm # noqa
|
|
rng = np.random.RandomState(1994)
|
|
|
|
|
|
class TestGPUBasicModels(unittest.TestCase):
|
|
cputest = test_bm.TestModels()
|
|
|
|
def test_eta_decay_gpu_hist(self):
|
|
self.cputest.run_eta_decay('gpu_hist')
|
|
|
|
def test_deterministic_gpu_hist(self):
|
|
kRows = 1000
|
|
kCols = 64
|
|
kClasses = 4
|
|
# Create large values to force rounding.
|
|
X = np.random.randn(kRows, kCols) * 1e4
|
|
y = np.random.randint(0, kClasses, size=kRows)
|
|
|
|
cls = xgb.XGBClassifier(tree_method='gpu_hist',
|
|
deterministic_histogram=True,
|
|
single_precision_histogram=True)
|
|
cls.fit(X, y)
|
|
cls.get_booster().save_model('test_deterministic_gpu_hist-0.json')
|
|
|
|
cls = xgb.XGBClassifier(tree_method='gpu_hist',
|
|
deterministic_histogram=True,
|
|
single_precision_histogram=True)
|
|
cls.fit(X, y)
|
|
cls.get_booster().save_model('test_deterministic_gpu_hist-1.json')
|
|
|
|
with open('test_deterministic_gpu_hist-0.json', 'r') as fd:
|
|
model_0 = fd.read()
|
|
with open('test_deterministic_gpu_hist-1.json', 'r') as fd:
|
|
model_1 = fd.read()
|
|
|
|
assert hash(model_0) == hash(model_1)
|
|
|
|
os.remove('test_deterministic_gpu_hist-0.json')
|
|
os.remove('test_deterministic_gpu_hist-1.json')
|