xgboost/tracker/rabit_hadoop.py
2015-01-11 11:15:12 -08:00

132 lines
6.6 KiB
Python
Executable File

#!/usr/bin/python
"""
This is a script to submit rabit job using hadoop streaming
submit the rabit process as mappers of MapReduce
"""
import argparse
import sys
import os
import time
import subprocess
import rabit_tracker as tracker
#!!! Set path to hadoop and hadoop streaming jar here
hadoop_binary = 'hadoop'
hadoop_streaming_jar = None
# code
hadoop_home = os.getenv('HADOOP_HOME')
if hadoop_home != None:
if hadoop_binary == None:
hadoop_binary = hadoop_home + '/bin/hadoop'
assert os.path.exists(hadoop_binary), "HADDOP_HOME does not contain the hadoop binary"
if hadoop_streaming_jar == None:
hadoop_streaming_jar = hadoop_home + '/lib/hadoop-streaming.jar'
assert os.path.exists(hadoop_streaming_jar), "HADDOP_HOME does not contain the haddop streaming jar"
if hadoop_binary == None or hadoop_streaming_jar == None:
print 'Warning: Cannot auto-detect path to hadoop and hadoop-streaming jar, need to set them via arguments -hs and -hb'
print '\tTo enable auto-detection, you can set enviroment variable HADOOP_HOME or modify rabit_hadoop.py line 14'
parser = argparse.ArgumentParser(description='Rabit script to submit rabit jobs using Hadoop Streaming.'\
'This script support both Hadoop 1.0 and Yarn(MRv2), Yarn is recommended')
parser.add_argument('-n', '--nworker', required=True, type=int,
help = 'number of worker proccess to be launched')
parser.add_argument('-nt', '--nthread', default = -1, type=int,
help = 'number of thread in each mapper to be launched, set it if each rabit job is multi-threaded')
parser.add_argument('-i', '--input', required=True,
help = 'input path in HDFS')
parser.add_argument('-o', '--output', required=True,
help = 'output path in HDFS')
parser.add_argument('-v', '--verbose', default=0, choices=[0, 1], type=int,
help = 'print more messages into the console')
parser.add_argument('-ac', '--auto_file_cache', default=1, choices=[0, 1], type=int,
help = 'whether automatically cache the files in the command to hadoop localfile, this is on by default')
parser.add_argument('-f', '--files', default = [], action='append',
help = 'the cached file list in mapreduce,'\
' the submission script will automatically cache all the files which appears in command to local folder'\
' This will also cause rewritten of all the file names in the command to current path,'\
' for example `../../kmeans ../kmeans.conf` will be rewritten to `./kmeans kmeans.conf`'\
' because the two files are cached to running folder.'\
' You may need this option to cache additional files.'\
' You can also use it to manually cache files when auto_file_cache is off')
parser.add_argument('--jobname', default='auto', help = 'customize jobname in tracker')
parser.add_argument('--timeout', default=600000000, type=int,
help = 'timeout (in million seconds) of each mapper job, automatically set to a very long time,'\
'normally you do not need to set this ')
parser.add_argument('-mem', '--memory_mb', default=-1, type=int,
help = 'maximum memory used by the process, Guide: set it large (near mapred.cluster.max.map.memory.mb)'\
'if you are running multi-threading rabit,'\
'so that each node can occupy all the mapper slots in a machine for maximum performance')
if hadoop_binary == None:
parser.add_argument('-hb', '--hadoop_binary', required = True,
help="path-to-hadoop binary folder")
else:
parser.add_argument('-hb', '--hadoop_binary', default = hadoop_binary,
help="path-to-hadoop binary folder")
if hadoop_streaming_jar == None:
parser.add_argument('-hs', '--hadoop_streaming_jar', required = True,
help='path-to hadoop streamimg jar file')
else:
parser.add_argument('-hs', '--hadoop_streaming_jar', default = hadoop_streaming_jar,
help='path-to hadoop streamimg jar file')
parser.add_argument('command', nargs='+',
help = 'command for rabit program')
args = parser.parse_args()
if args.jobname == 'auto':
args.jobname = ('Rabit[nworker=%d]:' % args.nworker) + args.command[0].split('/')[-1];
def hadoop_streaming(nworker, worker_args, yarn = False):
fset = set()
if args.auto_file_cache:
for i in range(len(args.command)):
f = args.command[i]
if os.path.exists(f):
fset.add(f)
if i == 0:
args.command[i] = './' + args.command[i].split('/')[-1]
else:
args.command[i] = args.command[i].split('/')[-1]
kmap = {}
# setup keymaps
if yarn:
kmap['nworker'] = 'mapreduce.job.maps'
kmap['jobname'] = 'mapreduce.job.name'
kmap['nthread'] = 'mapreduce.map.cpu.vcores'
kmap['timeout'] = 'mapreduce.task.timeout'
kmap['memory_mb'] = 'mapreduce.map.memory.mb'
else:
kmap['nworker'] = 'mapred.map.tasks'
kmap['jobname'] = 'mapred.job.name'
kmap['nthread'] = None
kmap['timeout'] = 'mapred.task.timeout'
kmap['memory_mb'] = 'mapred.job.map.memory.mb'
cmd = '%s jar %s' % (args.hadoop_binary, args.hadoop_streaming_jar)
cmd += ' -D%s=%d' % (kmap['nworker'], nworker)
cmd += ' -D%s=%s' % (kmap['jobname'], args.jobname)
if args.nthread != -1:
assert kmap['nthread'] is not None, 'nthread can only be set in Yarn(Hadoop 2.x) cluster'\
'it is recommended to use Yarn to submit rabit jobs'
cmd += ' -D%s=%d' % (kmap['ntread'], args.nthread)
cmd += ' -D%s=%d' % (kmap['timeout'], args.timeout)
if args.memory_mb != -1:
cmd += ' -D%s=%d' % (kmap['timeout'], args.timeout)
cmd += ' -input %s -output %s' % (args.input, args.output)
cmd += ' -mapper \"%s\" -reducer \"/bin/cat\" ' % (' '.join(args.command + worker_args))
if args.files != None:
for flst in args.files:
for f in flst.split('#'):
fset.add(f)
for f in fset:
cmd += ' -file %s' % f
print cmd
subprocess.check_call(cmd, shell = True)
if __name__ == 'main':
fun_submit = lambda nworker, worker_args: hadoop_streaming(nworker, worker_args, yarn=False)
tracker.submit(args.nworker, [], fun_submit = fun_submit, verbose = args.verbose)