xgboost/tests/python/test_basic.py
2024-01-05 17:53:36 +08:00

319 lines
11 KiB
Python

import json
import os
import pathlib
import tempfile
from pathlib import Path
import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
dpath = "demo/data/"
rng = np.random.RandomState(1994)
class TestBasic:
def test_compat(self):
from xgboost.compat import lazy_isinstance
a = np.array([1, 2, 3])
assert lazy_isinstance(a, "numpy", "ndarray")
assert not lazy_isinstance(a, "numpy", "dataframe")
def test_basic(self):
dtrain, dtest = tm.load_agaricus(__file__)
param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
# specify validations set to watch performance
watchlist = [(dtrain, "train")]
num_round = 2
bst = xgb.train(param, dtrain, num_round, evals=watchlist, verbose_eval=True)
preds = bst.predict(dtrain)
labels = dtrain.get_label()
err = sum(
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1
with tempfile.TemporaryDirectory() as tmpdir:
dtest_path = os.path.join(tmpdir, "dtest.dmatrix")
# save dmatrix into binary buffer
dtest.save_binary(dtest_path)
# save model
model_path = os.path.join(tmpdir, "model.ubj")
bst.save_model(model_path)
# load model and data in
bst2 = xgb.Booster(model_file=model_path)
dtest2 = xgb.DMatrix(dtest_path)
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2 - preds)) == 0
def test_metric_config(self):
# Make sure that the metric configuration happens in booster so the string
# `['error', 'auc']` doesn't get passed down to core.
dtrain, dtest = tm.load_agaricus(__file__)
param = {
"max_depth": 2,
"eta": 1,
"objective": "binary:logistic",
"eval_metric": ["error", "auc"],
}
watchlist = [(dtest, "eval"), (dtrain, "train")]
num_round = 2
booster = xgb.train(param, dtrain, num_round, evals=watchlist)
predt_0 = booster.predict(dtrain)
with tempfile.TemporaryDirectory() as tmpdir:
path = os.path.join(tmpdir, "model.json")
booster.save_model(path)
booster = xgb.Booster(params=param, model_file=path)
predt_1 = booster.predict(dtrain)
np.testing.assert_allclose(predt_0, predt_1)
def test_multiclass(self):
dtrain, dtest = tm.load_agaricus(__file__)
param = {"max_depth": 2, "eta": 1, "num_class": 2}
# specify validations set to watch performance
watchlist = [(dtest, "eval"), (dtrain, "train")]
num_round = 2
bst = xgb.train(param, dtrain, num_round, evals=watchlist)
# this is prediction
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds)) if preds[i] != labels[i]) / float(
len(preds)
)
# error must be smaller than 10%
assert err < 0.1
with tempfile.TemporaryDirectory() as tmpdir:
dtest_path = os.path.join(tmpdir, "dtest.buffer")
model_path = os.path.join(tmpdir, "model.ubj")
# save dmatrix into binary buffer
dtest.save_binary(dtest_path)
# save model
bst.save_model(model_path)
# load model and data in
bst2 = xgb.Booster(model_file=model_path)
dtest2 = xgb.DMatrix(dtest_path)
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2 - preds)) == 0
def test_dump(self):
data = np.random.randn(100, 2)
target = np.array([0, 1] * 50)
features = ["Feature1", "Feature2"]
dm = xgb.DMatrix(data, label=target, feature_names=features)
params = {
"objective": "binary:logistic",
"eval_metric": "logloss",
"eta": 0.3,
"max_depth": 1,
}
bst = xgb.train(params, dm, num_boost_round=1)
# number of feature importances should == number of features
dump1 = bst.get_dump()
assert len(dump1) == 1, "Expected only 1 tree to be dumped."
len(
dump1[0].splitlines()
) == 3, "Expected 1 root and 2 leaves - 3 lines in dump."
dump2 = bst.get_dump(with_stats=True)
assert (
dump2[0].count("\n") == 3
), "Expected 1 root and 2 leaves - 3 lines in dump."
msg = "Expected more info when with_stats=True is given."
assert dump2[0].find("\n") > dump1[0].find("\n"), msg
dump3 = bst.get_dump(dump_format="json")
dump3j = json.loads(dump3[0])
assert dump3j["nodeid"] == 0, "Expected the root node on top."
dump4 = bst.get_dump(dump_format="json", with_stats=True)
dump4j = json.loads(dump4[0])
assert "gain" in dump4j, "Expected 'gain' to be dumped in JSON."
with pytest.raises(ValueError):
bst.get_dump(fmap="foo")
def test_feature_score(self):
rng = np.random.RandomState(0)
data = rng.randn(100, 2)
target = np.array([0, 1] * 50)
features = ["F0"]
with pytest.raises(ValueError):
xgb.DMatrix(data, label=target, feature_names=features)
params = {"objective": "binary:logistic"}
dm = xgb.DMatrix(data, label=target, feature_names=["F0", "F1"])
booster = xgb.train(params, dm, num_boost_round=1)
# no error since feature names might be assigned before the booster seeing data
# and booster doesn't known about the actual number of features.
booster.feature_names = ["F0"]
with pytest.raises(ValueError):
booster.get_fscore()
booster.feature_names = None
# Use JSON to make sure the output has native Python type
scores = json.loads(json.dumps(booster.get_fscore()))
np.testing.assert_allclose(scores["f0"], 6.0)
def test_load_file_invalid(self):
with pytest.raises(xgb.core.XGBoostError):
xgb.Booster(model_file="incorrect_path")
with pytest.raises(xgb.core.XGBoostError):
xgb.Booster(model_file="不正なパス")
@pytest.mark.parametrize(
"path", ["모델.ubj", "がうる・ぐら.json"], ids=["path-0", "path-1"]
)
def test_unicode_path(self, tmpdir, path):
model_path = pathlib.Path(tmpdir) / path
dtrain, _ = tm.load_agaricus(__file__)
param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
bst = xgb.train(param, dtrain, num_boost_round=2)
bst.save_model(model_path)
bst2 = xgb.Booster(model_file=model_path)
assert bst.get_dump(dump_format="text") == bst2.get_dump(dump_format="text")
def test_dmatrix_numpy_init_omp(self):
rows = [1000, 11326, 15000]
cols = 50
for row in rows:
X = np.random.randn(row, cols)
y = np.random.randn(row).astype("f")
dm = xgb.DMatrix(X, y, nthread=0)
np.testing.assert_array_equal(dm.get_label(), y)
assert dm.num_row() == row
assert dm.num_col() == cols
dm = xgb.DMatrix(X, y, nthread=10)
np.testing.assert_array_equal(dm.get_label(), y)
assert dm.num_row() == row
assert dm.num_col() == cols
def test_cv(self):
dm, _ = tm.load_agaricus(__file__)
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
# return np.ndarray
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=False)
assert isinstance(cv, dict)
assert len(cv) == (4)
def test_cv_no_shuffle(self):
dm, _ = tm.load_agaricus(__file__)
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
# return np.ndarray
cv = xgb.cv(
params, dm, num_boost_round=10, shuffle=False, nfold=10, as_pandas=False
)
assert isinstance(cv, dict)
assert len(cv) == (4)
def test_cv_explicit_fold_indices(self):
dm, _ = tm.load_agaricus(__file__)
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
folds = [
# Train Test
([1, 3], [5, 8]),
([7, 9], [23, 43]),
]
# return np.ndarray
cv = xgb.cv(params, dm, num_boost_round=10, folds=folds, as_pandas=False)
assert isinstance(cv, dict)
assert len(cv) == (4)
@pytest.mark.skipif(**tm.skip_s390x())
def test_cv_explicit_fold_indices_labels(self):
params = {"max_depth": 2, "eta": 1, "objective": "reg:squarederror"}
N = 100
F = 3
dm = xgb.DMatrix(data=np.random.randn(N, F), label=np.arange(N))
folds = [
# Train Test
([1, 3], [5, 8]),
([7, 9], [23, 43, 11]),
]
# Use callback to log the test labels in each fold
class Callback(xgb.callback.TrainingCallback):
def __init__(self) -> None:
super().__init__()
def after_iteration(
self,
model,
epoch: int,
evals_log: xgb.callback.TrainingCallback.EvalsLog,
):
print([fold.dtest.get_label() for fold in model.cvfolds])
cb = Callback()
# Run cross validation and capture standard out to test callback result
with tm.captured_output() as (out, err):
xgb.cv(
params,
dm,
num_boost_round=1,
folds=folds,
callbacks=[cb],
as_pandas=False,
)
output = out.getvalue().strip()
solution = (
"[array([5., 8.], dtype=float32), array([23., 43., 11.],"
+ " dtype=float32)]"
)
assert output == solution
class TestBasicPathLike:
"""Unit tests using pathlib.Path for file interaction."""
def test_DMatrix_init_from_path(self):
"""Initialization from the data path."""
dtrain, _ = tm.load_agaricus(__file__)
assert dtrain.num_row() == 6513
assert dtrain.num_col() == 127
def test_DMatrix_save_to_path(self):
"""Saving to a binary file using pathlib from a DMatrix."""
data = np.random.randn(100, 2)
target = np.array([0, 1] * 50)
features = ["Feature1", "Feature2"]
dm = xgb.DMatrix(data, label=target, feature_names=features)
# save, assert exists, remove file
binary_path = Path("dtrain.bin")
dm.save_binary(binary_path)
assert binary_path.exists()
Path.unlink(binary_path)
def test_Booster_init_invalid_path(self):
"""An invalid model_file path should raise XGBoostError."""
with pytest.raises(xgb.core.XGBoostError):
xgb.Booster(model_file=Path("invalidpath"))