xgboost/R-package/tests/testthat/test_helpers.R
2016-05-17 00:24:06 -05:00

96 lines
3.6 KiB
R

context('Test helper functions')
require(xgboost)
require(data.table)
require(Matrix)
require(vcd)
set.seed(1982)
data(Arthritis)
data(agaricus.train, package='xgboost')
df <- data.table(Arthritis, keep.rownames = F)
df[,AgeDiscret := as.factor(round(Age / 10,0))]
df[,AgeCat := as.factor(ifelse(Age > 30, "Old", "Young"))]
df[,ID := NULL]
sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df)
output_vector <- df[,Y := 0][Improved == "Marked",Y := 1][,Y]
bst.Tree <- xgboost(data = sparse_matrix, label = output_vector, max.depth = 9,
eta = 1, nthread = 2, nround = 10, objective = "binary:logistic", booster = "gbtree")
bst.GLM <- xgboost(data = sparse_matrix, label = output_vector,
eta = 1, nthread = 2, nround = 10, objective = "binary:logistic", booster = "gblinear")
feature.names <- colnames(agaricus.train$data)
test_that("xgb.dump works", {
capture.output(print(xgb.dump(bst.Tree)))
capture.output(print(xgb.dump(bst.GLM)))
expect_true(xgb.dump(bst.Tree, 'xgb.model.dump', with.stats = T))
})
test_that("xgb-attribute functionality", {
val <- "my attribute value"
list.val <- list(my_attr=val, a=123, b='ok')
list.ch <- list.val[order(names(list.val))]
list.ch <- lapply(list.ch, as.character)
# proper input:
expect_error(xgb.attr(bst.Tree, NULL))
expect_error(xgb.attr(val, val))
# set & get:
expect_null(xgb.attr(bst.Tree, "asdf"))
expect_null(xgb.attributes(bst.Tree)) # initially, expect no attributes
xgb.attr(bst.Tree, "my_attr") <- val
expect_equal(xgb.attr(bst.Tree, "my_attr"), val)
xgb.attributes(bst.Tree) <- list.val
expect_equal(xgb.attributes(bst.Tree), list.ch)
# serializing:
xgb.save(bst.Tree, 'xgb.model')
bst <- xgb.load('xgb.model')
expect_equal(xgb.attr(bst, "my_attr"), val)
expect_equal(xgb.attributes(bst), list.ch)
# deletion:
xgb.attr(bst, "my_attr") <- NULL
expect_null(xgb.attr(bst, "my_attr"))
expect_equal(xgb.attributes(bst), list.ch[c("a", "b")])
xgb.attributes(bst) <- list(a=NULL, b=NULL)
expect_null(xgb.attributes(bst))
})
test_that("xgb.model.dt.tree works with and without feature names", {
names.dt.trees <- c("Tree", "Node", "ID", "Feature", "Split", "Yes", "No", "Missing", "Quality", "Cover")
dt.tree <- xgb.model.dt.tree(feature_names = feature.names, model = bst.Tree)
expect_equal(names.dt.trees, names(dt.tree))
expect_equal(dim(dt.tree), c(162, 10))
xgb.model.dt.tree(model = bst.Tree)
})
test_that("xgb.importance works with and without feature names", {
importance.Tree <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = bst.Tree)
expect_equal(dim(importance.Tree), c(7, 4))
expect_equal(colnames(importance.Tree), c("Feature", "Gain", "Cover", "Frequency"))
xgb.importance(model = bst.Tree)
xgb.plot.importance(importance_matrix = importance.Tree)
})
test_that("xgb.importance works with GLM model", {
importance.GLM <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = bst.GLM)
expect_equal(dim(importance.GLM), c(10, 2))
expect_equal(colnames(importance.GLM), c("Feature", "Weight"))
xgb.importance(model = bst.GLM)
xgb.plot.importance(importance.GLM)
})
test_that("xgb.plot.tree works with and without feature names", {
xgb.plot.tree(feature_names = feature.names, model = bst.Tree)
xgb.plot.tree(model = bst.Tree)
})
test_that("xgb.plot.multi.trees works with and without feature names", {
xgb.plot.multi.trees(model = bst.Tree, feature_names = feature.names, features.keep = 3)
xgb.plot.multi.trees(model = bst.Tree, features.keep = 3)
})
test_that("xgb.plot.deepness works", {
xgb.plot.deepness(model = bst.Tree)
})