xgboost/R-package/R/utils.R
Vadim Khotilovich bdfa8c0e09 [R-package] a few fixes for R (#1485)
* [R] fix #1465

* [R] add sanity check to fix #1434

* [R] some clean-ups for custom obj&eval; require maximize only for early stopping
2016-08-20 05:09:03 -05:00

330 lines
12 KiB
R

#
# This file is for the low level reuseable utility functions
# that are not supposed to be visibe to a user.
#
#
# General helper utilities ----------------------------------------------------
#
# SQL-style NVL shortcut.
NVL <- function(x, val) {
if (is.null(x))
return(val)
if (is.vector(x)) {
x[is.na(x)] <- val
return(x)
}
if (typeof(x) == 'closure')
return(x)
stop("typeof(x) == ", typeof(x), " is not supported by NVL")
}
#
# Low-level functions for boosting --------------------------------------------
#
# Merges booster params with whatever is provided in ...
# plus runs some checks
check.booster.params <- function(params, ...) {
if (typeof(params) != "list")
stop("params must be a list")
# in R interface, allow for '.' instead of '_' in parameter names
names(params) <- gsub("\\.", "_", names(params))
# merge parameters from the params and the dots-expansion
dot_params <- list(...)
names(dot_params) <- gsub("\\.", "_", names(dot_params))
if (length(intersect(names(params),
names(dot_params))) > 0)
stop("Same parameters in 'params' and in the call are not allowed. Please check your 'params' list.")
params <- c(params, dot_params)
# providing a parameter multiple times makes sense only for 'eval_metric'
name_freqs <- table(names(params))
multi_names <- setdiff(names(name_freqs[name_freqs > 1]), 'eval_metric')
if (length(multi_names) > 0) {
warning("The following parameters were provided multiple times:\n\t",
paste(multi_names, collapse=', '), "\n Only the last value for each of them will be used.\n")
# While xgboost internals would choose the last value for a multiple-times parameter,
# enforce it here in R as well (b/c multi-parameters might be used further in R code,
# and R takes the 1st value when multiple elements with the same name are present in a list).
for (n in multi_names) {
del_idx <- which(n == names(params))
del_idx <- del_idx[-length(del_idx)]
params[[del_idx]] <- NULL
}
}
# for multiclass, expect num_class to be set
if (typeof(params[['objective']]) == "character" &&
substr(NVL(params[['objective']], 'x'), 1, 6) == 'multi:' &&
as.numeric(NVL(params[['num_class']], 0)) < 2) {
stop("'num_class' > 1 parameter must be set for multiclass classification")
}
return(params)
}
# Performs some checks related to custom objective function.
# WARNING: has side-effects and can modify 'params' and 'obj' in its calling frame
check.custom.obj <- function(env = parent.frame()) {
if (!is.null(env$params[['objective']]) && !is.null(env$obj))
stop("Setting objectives in 'params' and 'obj' at the same time is not allowed")
if (!is.null(env$obj) && typeof(env$obj) != 'closure')
stop("'obj' must be a function")
# handle the case when custom objective function was provided through params
if (!is.null(env$params[['objective']]) &&
typeof(env$params$objective) == 'closure') {
env$obj <- env$params$objective
env$params$objective <- NULL
}
}
# Performs some checks related to custom evaluation function.
# WARNING: has side-effects and can modify 'params' and 'feval' in its calling frame
check.custom.eval <- function(env = parent.frame()) {
if (!is.null(env$params[['eval_metric']]) && !is.null(env$feval))
stop("Setting evaluation metrics in 'params' and 'feval' at the same time is not allowed")
if (!is.null(env$feval) && typeof(env$feval) != 'closure')
stop("'feval' must be a function")
# handle a situation when custom eval function was provided through params
if (!is.null(env$params[['eval_metric']]) &&
typeof(env$params$eval_metric) == 'closure') {
env$feval <- env$params$eval_metric
env$params$eval_metric <- NULL
}
# require maximize to be set when custom feval and early stopping are used together
if (!is.null(env$feval) &&
is.null(env$maximize) && (
!is.null(env$early_stopping_rounds) ||
has.callbacks(env$callbacks, 'cb.early.stop')))
stop("Please set 'maximize' to indicate whether the evaluation metric needs to be maximized or not")
}
# Update booster with dtrain for an iteration
xgb.iter.update <- function(booster, dtrain, iter, obj = NULL) {
if (class(booster) != "xgb.Booster.handle") {
stop("first argument type must be xgb.Booster.handle")
}
if (class(dtrain) != "xgb.DMatrix") {
stop("second argument type must be xgb.DMatrix")
}
if (is.null(obj)) {
.Call("XGBoosterUpdateOneIter_R", booster, as.integer(iter), dtrain,
PACKAGE = "xgboost")
} else {
pred <- predict(booster, dtrain)
gpair <- obj(pred, dtrain)
.Call("XGBoosterBoostOneIter_R", booster, dtrain, gpair$grad, gpair$hess, PACKAGE = "xgboost")
}
return(TRUE)
}
# Evaluate one iteration.
# Returns a named vector of evaluation metrics
# with the names in a 'datasetname-metricname' format.
xgb.iter.eval <- function(booster, watchlist, iter, feval = NULL) {
if (class(booster) != "xgb.Booster.handle")
stop("first argument type must be xgb.Booster.handle")
if (length(watchlist) == 0)
return(NULL)
evnames <- names(watchlist)
if (is.null(feval)) {
msg <- .Call("XGBoosterEvalOneIter_R", booster, as.integer(iter), watchlist,
as.list(evnames), PACKAGE = "xgboost")
msg <- stri_split_regex(msg, '(\\s+|:|\\s+)')[[1]][-1]
res <- as.numeric(msg[c(FALSE,TRUE)]) # even indices are the values
names(res) <- msg[c(TRUE,FALSE)] # odds are the names
} else {
res <- sapply(seq_along(watchlist), function(j) {
w <- watchlist[[j]]
preds <- predict(booster, w) # predict using all trees
eval_res <- feval(preds, w)
out <- eval_res$value
names(out) <- paste0(evnames[j], "-", eval_res$metric)
out
})
}
return(res)
}
#
# Helper functions for cross validation ---------------------------------------
#
# Generates random (stratified if needed) CV folds
generate.cv.folds <- function(nfold, nrows, stratified, label, params) {
# cannot do it for rank
if (exists('objective', where=params) &&
is.character(params$objective) &&
strtrim(params$objective, 5) == 'rank:') {
stop("\n\tAutomatic generation of CV-folds is not implemented for ranking!\n",
"\tConsider providing pre-computed CV-folds through the 'folds=' parameter.\n")
}
# shuffle
rnd_idx <- sample(1:nrows)
if (stratified &&
length(label) == length(rnd_idx)) {
y <- label[rnd_idx]
# WARNING: some heuristic logic is employed to identify classification setting!
# - For classification, need to convert y labels to factor before making the folds,
# and then do stratification by factor levels.
# - For regression, leave y numeric and do stratification by quantiles.
if (exists('objective', where=params) &&
is.character(params$objective)) {
# If 'objective' provided in params, assume that y is a classification label
# unless objective is reg:linear
if (params$objective != 'reg:linear')
y <- factor(y)
} else {
# If no 'objective' given in params, it means that user either wants to use
# the default 'reg:linear' objective or has provided a custom obj function.
# Here, assume classification setting when y has 5 or less unique values:
if (length(unique(y)) <= 5)
y <- factor(y)
}
folds <- xgb.createFolds(y, nfold)
} else {
# make simple non-stratified folds
kstep <- length(rnd_idx) %/% nfold
folds <- list()
for (i in 1:(nfold - 1)) {
folds[[i]] <- rnd_idx[1:kstep]
rnd_idx <- rnd_idx[-(1:kstep)]
}
folds[[nfold]] <- rnd_idx
}
return(folds)
}
# Creates CV folds stratified by the values of y.
# It was borrowed from caret::createFolds and simplified
# by always returning an unnamed list of fold indices.
xgb.createFolds <- function(y, k = 10)
{
if (is.numeric(y)) {
## Group the numeric data based on their magnitudes
## and sample within those groups.
## When the number of samples is low, we may have
## issues further slicing the numeric data into
## groups. The number of groups will depend on the
## ratio of the number of folds to the sample size.
## At most, we will use quantiles. If the sample
## is too small, we just do regular unstratified
## CV
cuts <- floor(length(y) / k)
if (cuts < 2) cuts <- 2
if (cuts > 5) cuts <- 5
y <- cut(y,
unique(stats::quantile(y, probs = seq(0, 1, length = cuts))),
include.lowest = TRUE)
}
if (k < length(y)) {
## reset levels so that the possible levels and
## the levels in the vector are the same
y <- factor(as.character(y))
numInClass <- table(y)
foldVector <- vector(mode = "integer", length(y))
## For each class, balance the fold allocation as far
## as possible, then resample the remainder.
## The final assignment of folds is also randomized.
for (i in 1:length(numInClass)) {
## create a vector of integers from 1:k as many times as possible without
## going over the number of samples in the class. Note that if the number
## of samples in a class is less than k, nothing is producd here.
seqVector <- rep(1:k, numInClass[i] %/% k)
## add enough random integers to get length(seqVector) == numInClass[i]
if (numInClass[i] %% k > 0) seqVector <- c(seqVector, sample(1:k, numInClass[i] %% k))
## shuffle the integers for fold assignment and assign to this classes's data
foldVector[which(y == dimnames(numInClass)$y[i])] <- sample(seqVector)
}
} else {
foldVector <- seq(along = y)
}
out <- split(seq(along = y), foldVector)
names(out) <- NULL
out
}
#
# Deprectaion notice utilities ------------------------------------------------
#
#' Deprecation notices.
#'
#' At this time, some of the parameter names were changed in order to make the code style more uniform.
#' The deprecated parameters would be removed in the next release.
#'
#' To see all the current deprecated and new parameters, check the \code{xgboost:::depr_par_lut} table.
#'
#' A deprecation warning is shown when any of the deprecated parameters is used in a call.
#' An additional warning is shown when there was a partial match to a deprecated parameter
#' (as R is able to partially match parameter names).
#'
#' @name xgboost-deprecated
NULL
# Lookup table for the deprecated parameters bookkeeping
depr_par_lut <- matrix(c(
'print.every.n', 'print_every_n',
'early.stop.round', 'early_stopping_rounds',
'training.data', 'data',
'with.stats', 'with_stats',
'numberOfClusters', 'n_clusters',
'features.keep', 'features_keep',
'plot.height','plot_height',
'plot.width','plot_width',
'dummy', 'DUMMY'
), ncol=2, byrow = TRUE)
colnames(depr_par_lut) <- c('old', 'new')
# Checks the dot-parameters for deprecated names
# (including partial matching), gives a deprecation warning,
# and sets new parameters to the old parameters' values within its parent frame.
# WARNING: has side-effects
check.deprecation <- function(..., env = parent.frame()) {
pars <- list(...)
# exact and partial matches
all_match <- pmatch(names(pars), depr_par_lut[,1])
# indices of matched pars' names
idx_pars <- which(!is.na(all_match))
if (length(idx_pars) == 0) return()
# indices of matched LUT rows
idx_lut <- all_match[idx_pars]
# which of idx_lut were the exact matches?
ex_match <- depr_par_lut[idx_lut,1] %in% names(pars)
for (i in seq_along(idx_pars)) {
pars_par <- names(pars)[idx_pars[i]]
old_par <- depr_par_lut[idx_lut[i], 1]
new_par <- depr_par_lut[idx_lut[i], 2]
if (!ex_match[i]) {
warning("'", pars_par, "' was partially matched to '", old_par,"'")
}
.Deprecated(new_par, old=old_par, package = 'xgboost')
if (new_par != 'NULL') {
eval(parse(text = paste(new_par, '<-', pars[[pars_par]])), envir = env)
}
}
}