167 lines
5.9 KiB
C++
167 lines
5.9 KiB
C++
/*!
|
|
* Copyright 2017-2020 XGBoost contributors
|
|
*/
|
|
#include <dmlc/filesystem.h>
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/predictor.h>
|
|
|
|
#include "../helpers.h"
|
|
#include "test_predictor.h"
|
|
#include "../../../src/gbm/gbtree_model.h"
|
|
#include "../../../src/data/adapter.h"
|
|
|
|
namespace xgboost {
|
|
TEST(CpuPredictor, Basic) {
|
|
auto lparam = CreateEmptyGenericParam(GPUIDX);
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &lparam));
|
|
|
|
int kRows = 5;
|
|
int kCols = 5;
|
|
|
|
LearnerModelParam param;
|
|
param.num_feature = kCols;
|
|
param.base_score = 0.0;
|
|
param.num_output_group = 1;
|
|
|
|
gbm::GBTreeModel model = CreateTestModel(¶m);
|
|
|
|
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
|
|
|
|
// Test predict batch
|
|
PredictionCacheEntry out_predictions;
|
|
cpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
|
|
ASSERT_EQ(model.trees.size(), out_predictions.version);
|
|
std::vector<float>& out_predictions_h = out_predictions.predictions.HostVector();
|
|
for (size_t i = 0; i < out_predictions.predictions.Size(); i++) {
|
|
ASSERT_EQ(out_predictions_h[i], 1.5);
|
|
}
|
|
|
|
// Test predict instance
|
|
auto const &batch = *dmat->GetBatches<xgboost::SparsePage>().begin();
|
|
for (size_t i = 0; i < batch.Size(); i++) {
|
|
std::vector<float> instance_out_predictions;
|
|
cpu_predictor->PredictInstance(batch[i], &instance_out_predictions, model);
|
|
ASSERT_EQ(instance_out_predictions[0], 1.5);
|
|
}
|
|
|
|
// Test predict leaf
|
|
std::vector<float> leaf_out_predictions;
|
|
cpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
|
|
for (auto v : leaf_out_predictions) {
|
|
ASSERT_EQ(v, 0);
|
|
}
|
|
|
|
// Test predict contribution
|
|
std::vector<float> out_contribution;
|
|
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model);
|
|
ASSERT_EQ(out_contribution.size(), kRows * (kCols + 1));
|
|
for (size_t i = 0; i < out_contribution.size(); ++i) {
|
|
auto const& contri = out_contribution[i];
|
|
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
|
|
if ((i+1) % (kCols+1) == 0) {
|
|
ASSERT_EQ(out_contribution.back(), 1.5f);
|
|
} else {
|
|
ASSERT_EQ(contri, 0);
|
|
}
|
|
}
|
|
// Test predict contribution (approximate method)
|
|
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model, 0, nullptr, true);
|
|
for (size_t i = 0; i < out_contribution.size(); ++i) {
|
|
auto const& contri = out_contribution[i];
|
|
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
|
|
if ((i+1) % (kCols+1) == 0) {
|
|
ASSERT_EQ(out_contribution.back(), 1.5f);
|
|
} else {
|
|
ASSERT_EQ(contri, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(CpuPredictor, ExternalMemory) {
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
std::string filename = tmpdir.path + "/big.libsvm";
|
|
std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(12, 64, filename);
|
|
auto lparam = CreateEmptyGenericParam(GPUIDX);
|
|
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &lparam));
|
|
|
|
LearnerModelParam param;
|
|
param.base_score = 0;
|
|
param.num_feature = dmat->Info().num_col_;
|
|
param.num_output_group = 1;
|
|
|
|
gbm::GBTreeModel model = CreateTestModel(¶m);
|
|
|
|
// Test predict batch
|
|
PredictionCacheEntry out_predictions;
|
|
cpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
|
|
std::vector<float> &out_predictions_h = out_predictions.predictions.HostVector();
|
|
ASSERT_EQ(out_predictions.predictions.Size(), dmat->Info().num_row_);
|
|
for (const auto& v : out_predictions_h) {
|
|
ASSERT_EQ(v, 1.5);
|
|
}
|
|
|
|
// Test predict leaf
|
|
std::vector<float> leaf_out_predictions;
|
|
cpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
|
|
ASSERT_EQ(leaf_out_predictions.size(), dmat->Info().num_row_);
|
|
for (const auto& v : leaf_out_predictions) {
|
|
ASSERT_EQ(v, 0);
|
|
}
|
|
|
|
// Test predict contribution
|
|
std::vector<float> out_contribution;
|
|
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model);
|
|
ASSERT_EQ(out_contribution.size(), dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
|
|
for (size_t i = 0; i < out_contribution.size(); ++i) {
|
|
auto const& contri = out_contribution[i];
|
|
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
|
|
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
|
|
ASSERT_EQ(out_contribution.back(), 1.5f);
|
|
} else {
|
|
ASSERT_EQ(contri, 0);
|
|
}
|
|
}
|
|
|
|
// Test predict contribution (approximate method)
|
|
std::vector<float> out_contribution_approximate;
|
|
cpu_predictor->PredictContribution(dmat.get(), &out_contribution_approximate, model, 0, nullptr, true);
|
|
ASSERT_EQ(out_contribution_approximate.size(),
|
|
dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
|
|
for (size_t i = 0; i < out_contribution.size(); ++i) {
|
|
auto const& contri = out_contribution[i];
|
|
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
|
|
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
|
|
ASSERT_EQ(out_contribution.back(), 1.5f);
|
|
} else {
|
|
ASSERT_EQ(contri, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(CpuPredictor, InplacePredict) {
|
|
bst_row_t constexpr kRows{128};
|
|
bst_feature_t constexpr kCols{64};
|
|
auto gen = RandomDataGenerator{kRows, kCols, 0.5}.Device(-1);
|
|
{
|
|
HostDeviceVector<float> data;
|
|
gen.GenerateDense(&data);
|
|
ASSERT_EQ(data.Size(), kRows * kCols);
|
|
data::DenseAdapter x{data.HostPointer(), kRows, kCols};
|
|
TestInplacePrediction(x, "cpu_predictor", kRows, kCols, -1);
|
|
}
|
|
|
|
{
|
|
HostDeviceVector<float> data;
|
|
HostDeviceVector<bst_row_t> rptrs;
|
|
HostDeviceVector<bst_feature_t> columns;
|
|
gen.GenerateCSR(&data, &rptrs, &columns);
|
|
data::CSRAdapter x(rptrs.HostPointer(), columns.HostPointer(),
|
|
data.HostPointer(), kRows, data.Size(), kCols);
|
|
TestInplacePrediction(x, "cpu_predictor", kRows, kCols, -1);
|
|
}
|
|
}
|
|
} // namespace xgboost
|