- Use `bst_bin_t` in batch param constructor. - Use `StringView` to avoid `std::string` when appropriate. - Avoid using `MetaInfo` in quantile constructor to limit the scope of parameter.
495 lines
19 KiB
C++
495 lines
19 KiB
C++
/*!
|
|
* Copyright 2020-2022 by XGBoost Contributors
|
|
*/
|
|
#include "quantile.h"
|
|
|
|
#include <limits>
|
|
#include <utility>
|
|
|
|
#include "../data/adapter.h"
|
|
#include "categorical.h"
|
|
#include "hist_util.h"
|
|
#include "rabit/rabit.h"
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
template <typename WQSketch>
|
|
SketchContainerImpl<WQSketch>::SketchContainerImpl(std::vector<bst_row_t> columns_size,
|
|
int32_t max_bins,
|
|
Span<FeatureType const> feature_types,
|
|
bool use_group, int32_t n_threads)
|
|
: feature_types_(feature_types.cbegin(), feature_types.cend()),
|
|
columns_size_{std::move(columns_size)},
|
|
max_bins_{max_bins},
|
|
use_group_ind_{use_group},
|
|
n_threads_{n_threads} {
|
|
monitor_.Init(__func__);
|
|
CHECK_NE(columns_size_.size(), 0);
|
|
sketches_.resize(columns_size_.size());
|
|
CHECK_GE(n_threads_, 1);
|
|
categories_.resize(columns_size_.size());
|
|
has_categorical_ = std::any_of(feature_types_.cbegin(), feature_types_.cend(), IsCatOp{});
|
|
}
|
|
|
|
namespace {
|
|
// Function to merge hessian and sample weights
|
|
std::vector<float> MergeWeights(MetaInfo const &info, Span<float const> hessian, bool use_group,
|
|
int32_t n_threads) {
|
|
CHECK_EQ(hessian.size(), info.num_row_);
|
|
std::vector<float> results(hessian.size());
|
|
auto const &group_ptr = info.group_ptr_;
|
|
auto const& weights = info.weights_.HostVector();
|
|
auto get_weight = [&](size_t i) { return weights.empty() ? 1.0f : weights[i]; };
|
|
if (use_group) {
|
|
CHECK_GE(group_ptr.size(), 2);
|
|
CHECK_EQ(group_ptr.back(), hessian.size());
|
|
size_t cur_group = 0;
|
|
for (size_t i = 0; i < hessian.size(); ++i) {
|
|
results[i] = hessian[i] * get_weight(cur_group);
|
|
if (i == group_ptr[cur_group + 1]) {
|
|
cur_group++;
|
|
}
|
|
}
|
|
} else {
|
|
ParallelFor(hessian.size(), n_threads, Sched::Auto(),
|
|
[&](auto i) { results[i] = hessian[i] * get_weight(i); });
|
|
}
|
|
return results;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
template <typename WQSketch>
|
|
void SketchContainerImpl<WQSketch>::PushRowPage(SparsePage const &page, MetaInfo const &info,
|
|
Span<float const> hessian) {
|
|
monitor_.Start(__func__);
|
|
bst_feature_t n_columns = info.num_col_;
|
|
auto is_dense = info.num_nonzero_ == info.num_col_ * info.num_row_;
|
|
CHECK_GE(n_threads_, 1);
|
|
CHECK_EQ(sketches_.size(), n_columns);
|
|
|
|
// glue these conditions using ternary operator to avoid making data copies.
|
|
auto const &weights =
|
|
hessian.empty() ? (use_group_ind_ ? detail::UnrollGroupWeights(info) // use group weight
|
|
: info.weights_.HostVector()) // use sample weight
|
|
: MergeWeights(info, hessian, use_group_ind_,
|
|
n_threads_); // use hessian merged with group/sample weights
|
|
if (!weights.empty()) {
|
|
CHECK_EQ(weights.size(), info.num_row_);
|
|
}
|
|
|
|
auto batch = data::SparsePageAdapterBatch{page.GetView()};
|
|
this->PushRowPageImpl(batch, page.base_rowid, OptionalWeights{weights}, page.data.Size(),
|
|
info.num_col_, is_dense, [](auto) { return true; });
|
|
monitor_.Stop(__func__);
|
|
}
|
|
|
|
template <typename Batch>
|
|
void HostSketchContainer::PushAdapterBatch(Batch const &batch, size_t base_rowid,
|
|
MetaInfo const &info, float missing) {
|
|
auto const &h_weights =
|
|
(use_group_ind_ ? detail::UnrollGroupWeights(info) : info.weights_.HostVector());
|
|
|
|
auto is_valid = data::IsValidFunctor{missing};
|
|
auto weights = OptionalWeights{Span<float const>{h_weights}};
|
|
// the nnz from info is not reliable as sketching might be the first place to go through
|
|
// the data.
|
|
auto is_dense = info.num_nonzero_ == info.num_col_ * info.num_row_;
|
|
this->PushRowPageImpl(batch, base_rowid, weights, info.num_nonzero_, info.num_col_, is_dense,
|
|
is_valid);
|
|
}
|
|
|
|
#define INSTANTIATE(_type) \
|
|
template void HostSketchContainer::PushAdapterBatch<data::_type>( \
|
|
data::_type const &batch, size_t base_rowid, MetaInfo const &info, float missing);
|
|
|
|
INSTANTIATE(ArrayAdapterBatch)
|
|
INSTANTIATE(CSRArrayAdapterBatch)
|
|
INSTANTIATE(CSCAdapterBatch)
|
|
INSTANTIATE(DataTableAdapterBatch)
|
|
INSTANTIATE(SparsePageAdapterBatch)
|
|
|
|
namespace {
|
|
/**
|
|
* \brief A view over gathered sketch values.
|
|
*/
|
|
template <typename T>
|
|
struct QuantileAllreduce {
|
|
common::Span<T> global_values;
|
|
common::Span<size_t> worker_indptr;
|
|
common::Span<size_t> feature_indptr;
|
|
size_t n_features{0};
|
|
/**
|
|
* \brief Get sketch values of the a feature from a worker.
|
|
*
|
|
* \param rank rank of target worker
|
|
* \param fidx feature idx
|
|
*/
|
|
auto Values(int32_t rank, bst_feature_t fidx) const {
|
|
// get span for worker
|
|
auto wsize = worker_indptr[rank + 1] - worker_indptr[rank];
|
|
auto worker_values = global_values.subspan(worker_indptr[rank], wsize);
|
|
auto psize = n_features + 1;
|
|
auto worker_feat_indptr = feature_indptr.subspan(psize * rank, psize);
|
|
// get span for feature
|
|
auto feat_beg = worker_feat_indptr[fidx];
|
|
auto feat_size = worker_feat_indptr[fidx + 1] - feat_beg;
|
|
return worker_values.subspan(feat_beg, feat_size);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* \brief Merge all categories from other workers.
|
|
*/
|
|
void AllreduceCategories(Span<FeatureType const> feature_types, int32_t n_threads,
|
|
std::vector<std::set<float>> *p_categories) {
|
|
auto &categories = *p_categories;
|
|
auto world_size = rabit::GetWorldSize();
|
|
auto rank = rabit::GetRank();
|
|
if (world_size == 1) {
|
|
return;
|
|
}
|
|
|
|
// CSC indptr to each feature
|
|
std::vector<size_t> feature_ptr(categories.size() + 1, 0);
|
|
for (size_t i = 0; i < categories.size(); ++i) {
|
|
auto const &feat = categories[i];
|
|
feature_ptr[i + 1] = feat.size();
|
|
}
|
|
std::partial_sum(feature_ptr.begin(), feature_ptr.end(), feature_ptr.begin());
|
|
CHECK_EQ(feature_ptr.front(), 0);
|
|
|
|
// gather all feature ptrs from workers
|
|
std::vector<size_t> global_feat_ptrs(feature_ptr.size() * world_size, 0);
|
|
size_t feat_begin = rank * feature_ptr.size(); // pointer to current worker
|
|
std::copy(feature_ptr.begin(), feature_ptr.end(), global_feat_ptrs.begin() + feat_begin);
|
|
rabit::Allreduce<rabit::op::Sum>(global_feat_ptrs.data(), global_feat_ptrs.size());
|
|
|
|
// move all categories into a flatten vector to prepare for allreduce
|
|
size_t total = feature_ptr.back();
|
|
std::vector<float> flatten(total, 0);
|
|
auto cursor{flatten.begin()};
|
|
for (auto const &feat : categories) {
|
|
cursor = std::copy(feat.cbegin(), feat.cend(), cursor);
|
|
}
|
|
|
|
// indptr for indexing workers
|
|
std::vector<size_t> global_worker_ptr(world_size + 1, 0);
|
|
global_worker_ptr[rank + 1] = total; // shift 1 to right for constructing the indptr
|
|
rabit::Allreduce<rabit::op::Sum>(global_worker_ptr.data(), global_worker_ptr.size());
|
|
std::partial_sum(global_worker_ptr.cbegin(), global_worker_ptr.cend(), global_worker_ptr.begin());
|
|
// total number of categories in all workers with all features
|
|
auto gtotal = global_worker_ptr.back();
|
|
|
|
// categories in all workers with all features.
|
|
std::vector<float> global_categories(gtotal, 0);
|
|
auto rank_begin = global_worker_ptr[rank];
|
|
auto rank_size = global_worker_ptr[rank + 1] - rank_begin;
|
|
CHECK_EQ(rank_size, total);
|
|
std::copy(flatten.cbegin(), flatten.cend(), global_categories.begin() + rank_begin);
|
|
// gather values from all workers.
|
|
rabit::Allreduce<rabit::op::Sum>(global_categories.data(), global_categories.size());
|
|
QuantileAllreduce<float> allreduce_result{global_categories, global_worker_ptr, global_feat_ptrs,
|
|
categories.size()};
|
|
ParallelFor(categories.size(), n_threads, [&](auto fidx) {
|
|
if (!IsCat(feature_types, fidx)) {
|
|
return;
|
|
}
|
|
for (int32_t r = 0; r < world_size; ++r) {
|
|
if (r == rank) {
|
|
// continue if it's current worker.
|
|
continue;
|
|
}
|
|
// 1 feature of 1 worker
|
|
auto worker_feature = allreduce_result.Values(r, fidx);
|
|
for (auto c : worker_feature) {
|
|
categories[fidx].emplace(c);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
} // anonymous namespace
|
|
|
|
template <typename WQSketch>
|
|
void SketchContainerImpl<WQSketch>::GatherSketchInfo(
|
|
std::vector<typename WQSketch::SummaryContainer> const &reduced,
|
|
std::vector<size_t> *p_worker_segments, std::vector<bst_row_t> *p_sketches_scan,
|
|
std::vector<typename WQSketch::Entry> *p_global_sketches) {
|
|
auto &worker_segments = *p_worker_segments;
|
|
worker_segments.resize(1, 0);
|
|
auto world = rabit::GetWorldSize();
|
|
auto rank = rabit::GetRank();
|
|
auto n_columns = sketches_.size();
|
|
|
|
// get the size of each feature.
|
|
std::vector<bst_row_t> sketch_size;
|
|
for (size_t i = 0; i < reduced.size(); ++i) {
|
|
if (IsCat(feature_types_, i)) {
|
|
sketch_size.push_back(0);
|
|
} else {
|
|
sketch_size.push_back(reduced[i].size);
|
|
}
|
|
}
|
|
// turn the size into CSC indptr
|
|
std::vector<bst_row_t> &sketches_scan = *p_sketches_scan;
|
|
sketches_scan.resize((n_columns + 1) * world, 0);
|
|
size_t beg_scan = rank * (n_columns + 1); // starting storage for current worker.
|
|
std::partial_sum(sketch_size.cbegin(), sketch_size.cend(), sketches_scan.begin() + beg_scan + 1);
|
|
|
|
// Gather all column pointers
|
|
rabit::Allreduce<rabit::op::Sum>(sketches_scan.data(), sketches_scan.size());
|
|
for (int32_t i = 0; i < world; ++i) {
|
|
size_t back = (i + 1) * (n_columns + 1) - 1;
|
|
auto n_entries = sketches_scan.at(back);
|
|
worker_segments.push_back(n_entries);
|
|
}
|
|
// Offset of sketch from each worker.
|
|
std::partial_sum(worker_segments.begin(), worker_segments.end(), worker_segments.begin());
|
|
CHECK_GE(worker_segments.size(), 1);
|
|
auto total = worker_segments.back();
|
|
|
|
auto &global_sketches = *p_global_sketches;
|
|
global_sketches.resize(total, typename WQSketch::Entry{0, 0, 0, 0});
|
|
auto worker_sketch = Span<typename WQSketch::Entry>{global_sketches}.subspan(
|
|
worker_segments[rank], worker_segments[rank + 1] - worker_segments[rank]);
|
|
auto cursor{worker_sketch.begin()};
|
|
for (size_t fidx = 0; fidx < reduced.size(); ++fidx) {
|
|
auto const &sketch = reduced[fidx];
|
|
if (IsCat(feature_types_, fidx)) {
|
|
// nothing to do if it's categorical feature, size is 0 so no need to change cursor
|
|
continue;
|
|
} else {
|
|
cursor = std::copy(sketch.data, sketch.data + sketch.size, cursor);
|
|
}
|
|
}
|
|
|
|
static_assert(sizeof(typename WQSketch::Entry) / 4 == sizeof(float),
|
|
"Unexpected size of sketch entry.");
|
|
rabit::Allreduce<rabit::op::Sum>(
|
|
reinterpret_cast<float *>(global_sketches.data()),
|
|
global_sketches.size() * sizeof(typename WQSketch::Entry) / sizeof(float));
|
|
}
|
|
|
|
template <typename WQSketch>
|
|
void SketchContainerImpl<WQSketch>::AllReduce(
|
|
std::vector<typename WQSketch::SummaryContainer> *p_reduced,
|
|
std::vector<int32_t>* p_num_cuts) {
|
|
monitor_.Start(__func__);
|
|
|
|
size_t n_columns = sketches_.size();
|
|
rabit::Allreduce<rabit::op::Max>(&n_columns, 1);
|
|
CHECK_EQ(n_columns, sketches_.size()) << "Number of columns differs across workers";
|
|
|
|
AllreduceCategories(feature_types_, n_threads_, &categories_);
|
|
|
|
auto& num_cuts = *p_num_cuts;
|
|
CHECK_EQ(num_cuts.size(), 0);
|
|
num_cuts.resize(sketches_.size());
|
|
|
|
auto &reduced = *p_reduced;
|
|
reduced.resize(sketches_.size());
|
|
|
|
// Prune the intermediate num cuts for synchronization.
|
|
std::vector<bst_row_t> global_column_size(columns_size_);
|
|
rabit::Allreduce<rabit::op::Sum>(global_column_size.data(), global_column_size.size());
|
|
|
|
ParallelFor(sketches_.size(), n_threads_, [&](size_t i) {
|
|
int32_t intermediate_num_cuts = static_cast<int32_t>(
|
|
std::min(global_column_size[i], static_cast<size_t>(max_bins_ * WQSketch::kFactor)));
|
|
if (global_column_size[i] == 0) {
|
|
return;
|
|
}
|
|
if (IsCat(feature_types_, i)) {
|
|
intermediate_num_cuts = categories_[i].size();
|
|
} else {
|
|
typename WQSketch::SummaryContainer out;
|
|
sketches_[i].GetSummary(&out);
|
|
reduced[i].Reserve(intermediate_num_cuts);
|
|
CHECK(reduced[i].data);
|
|
reduced[i].SetPrune(out, intermediate_num_cuts);
|
|
}
|
|
num_cuts[i] = intermediate_num_cuts;
|
|
});
|
|
|
|
auto world = rabit::GetWorldSize();
|
|
if (world == 1) {
|
|
monitor_.Stop(__func__);
|
|
return;
|
|
}
|
|
|
|
std::vector<size_t> worker_segments(1, 0); // CSC pointer to sketches.
|
|
std::vector<bst_row_t> sketches_scan((n_columns + 1) * world, 0);
|
|
|
|
std::vector<typename WQSketch::Entry> global_sketches;
|
|
this->GatherSketchInfo(reduced, &worker_segments, &sketches_scan, &global_sketches);
|
|
|
|
std::vector<typename WQSketch::SummaryContainer> final_sketches(n_columns);
|
|
|
|
ParallelFor(n_columns, n_threads_, [&](auto fidx) {
|
|
// gcc raises subobject-linkage warning if we put allreduce_result as lambda capture
|
|
QuantileAllreduce<typename WQSketch::Entry> allreduce_result{global_sketches, worker_segments,
|
|
sketches_scan, n_columns};
|
|
int32_t intermediate_num_cuts = num_cuts[fidx];
|
|
auto nbytes = WQSketch::SummaryContainer::CalcMemCost(intermediate_num_cuts);
|
|
if (IsCat(feature_types_, fidx)) {
|
|
return;
|
|
}
|
|
|
|
for (int32_t r = 0; r < world; ++r) {
|
|
// 1 feature of 1 worker
|
|
auto worker_feature = allreduce_result.Values(r, fidx);
|
|
CHECK(worker_feature.data());
|
|
typename WQSketch::Summary summary(worker_feature.data(), worker_feature.size());
|
|
auto &out = final_sketches.at(fidx);
|
|
out.Reduce(summary, nbytes);
|
|
}
|
|
|
|
reduced.at(fidx).Reserve(intermediate_num_cuts);
|
|
reduced.at(fidx).SetPrune(final_sketches.at(fidx), intermediate_num_cuts);
|
|
});
|
|
monitor_.Stop(__func__);
|
|
}
|
|
|
|
template <typename SketchType>
|
|
void AddCutPoint(typename SketchType::SummaryContainer const &summary, int max_bin,
|
|
HistogramCuts *cuts) {
|
|
size_t required_cuts = std::min(summary.size, static_cast<size_t>(max_bin));
|
|
auto &cut_values = cuts->cut_values_.HostVector();
|
|
for (size_t i = 1; i < required_cuts; ++i) {
|
|
bst_float cpt = summary.data[i].value;
|
|
if (i == 1 || cpt > cut_values.back()) {
|
|
cut_values.push_back(cpt);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto AddCategories(std::set<float> const &categories, HistogramCuts *cuts) {
|
|
if (std::any_of(categories.cbegin(), categories.cend(), InvalidCat)) {
|
|
InvalidCategory();
|
|
}
|
|
auto &cut_values = cuts->cut_values_.HostVector();
|
|
auto max_cat = *std::max_element(categories.cbegin(), categories.cend());
|
|
CheckMaxCat(max_cat, categories.size());
|
|
for (bst_cat_t i = 0; i <= AsCat(max_cat); ++i) {
|
|
cut_values.push_back(i);
|
|
}
|
|
return max_cat;
|
|
}
|
|
|
|
template <typename WQSketch>
|
|
void SketchContainerImpl<WQSketch>::MakeCuts(HistogramCuts* cuts) {
|
|
monitor_.Start(__func__);
|
|
std::vector<typename WQSketch::SummaryContainer> reduced;
|
|
std::vector<int32_t> num_cuts;
|
|
this->AllReduce(&reduced, &num_cuts);
|
|
|
|
cuts->min_vals_.HostVector().resize(sketches_.size(), 0.0f);
|
|
std::vector<typename WQSketch::SummaryContainer> final_summaries(reduced.size());
|
|
|
|
ParallelFor(reduced.size(), n_threads_, Sched::Guided(), [&](size_t fidx) {
|
|
if (IsCat(feature_types_, fidx)) {
|
|
return;
|
|
}
|
|
typename WQSketch::SummaryContainer &a = final_summaries[fidx];
|
|
size_t max_num_bins = std::min(num_cuts[fidx], max_bins_);
|
|
a.Reserve(max_num_bins + 1);
|
|
CHECK(a.data);
|
|
if (num_cuts[fidx] != 0) {
|
|
a.SetPrune(reduced[fidx], max_num_bins + 1);
|
|
CHECK(a.data && reduced[fidx].data);
|
|
const bst_float mval = a.data[0].value;
|
|
cuts->min_vals_.HostVector()[fidx] = mval - fabs(mval) - 1e-5f;
|
|
} else {
|
|
// Empty column.
|
|
const float mval = 1e-5f;
|
|
cuts->min_vals_.HostVector()[fidx] = mval;
|
|
}
|
|
});
|
|
|
|
float max_cat{-1.f};
|
|
for (size_t fid = 0; fid < reduced.size(); ++fid) {
|
|
size_t max_num_bins = std::min(num_cuts[fid], max_bins_);
|
|
typename WQSketch::SummaryContainer const& a = final_summaries[fid];
|
|
if (IsCat(feature_types_, fid)) {
|
|
max_cat = std::max(max_cat, AddCategories(categories_.at(fid), cuts));
|
|
} else {
|
|
AddCutPoint<WQSketch>(a, max_num_bins, cuts);
|
|
// push a value that is greater than anything
|
|
const bst_float cpt = (a.size > 0) ? a.data[a.size - 1].value
|
|
: cuts->min_vals_.HostVector()[fid];
|
|
// this must be bigger than last value in a scale
|
|
const bst_float last = cpt + (fabs(cpt) + 1e-5f);
|
|
cuts->cut_values_.HostVector().push_back(last);
|
|
}
|
|
|
|
// Ensure that every feature gets at least one quantile point
|
|
CHECK_LE(cuts->cut_values_.HostVector().size(), std::numeric_limits<uint32_t>::max());
|
|
auto cut_size = static_cast<uint32_t>(cuts->cut_values_.HostVector().size());
|
|
CHECK_GT(cut_size, cuts->cut_ptrs_.HostVector().back());
|
|
cuts->cut_ptrs_.HostVector().push_back(cut_size);
|
|
}
|
|
|
|
cuts->SetCategorical(this->has_categorical_, max_cat);
|
|
monitor_.Stop(__func__);
|
|
}
|
|
|
|
template class SketchContainerImpl<WQuantileSketch<float, float>>;
|
|
template class SketchContainerImpl<WXQuantileSketch<float, float>>;
|
|
|
|
HostSketchContainer::HostSketchContainer(int32_t max_bins, common::Span<FeatureType const> ft,
|
|
std::vector<size_t> columns_size, bool use_group,
|
|
int32_t n_threads)
|
|
: SketchContainerImpl{columns_size, max_bins, ft, use_group, n_threads} {
|
|
monitor_.Init(__func__);
|
|
ParallelFor(sketches_.size(), n_threads_, Sched::Auto(), [&](auto i) {
|
|
auto n_bins = std::min(static_cast<size_t>(max_bins_), columns_size_[i]);
|
|
n_bins = std::max(n_bins, static_cast<decltype(n_bins)>(1));
|
|
auto eps = 1.0 / (static_cast<float>(n_bins) * WQSketch::kFactor);
|
|
if (!IsCat(this->feature_types_, i)) {
|
|
sketches_[i].Init(columns_size_[i], eps);
|
|
sketches_[i].inqueue.queue.resize(sketches_[i].limit_size * 2);
|
|
}
|
|
});
|
|
}
|
|
|
|
void SortedSketchContainer::PushColPage(SparsePage const &page, MetaInfo const &info,
|
|
Span<float const> hessian) {
|
|
monitor_.Start(__func__);
|
|
// glue these conditions using ternary operator to avoid making data copies.
|
|
auto const &weights =
|
|
hessian.empty() ? (use_group_ind_ ? detail::UnrollGroupWeights(info) // use group weight
|
|
: info.weights_.HostVector()) // use sample weight
|
|
: MergeWeights(info, hessian, use_group_ind_,
|
|
n_threads_); // use hessian merged with group/sample weights
|
|
CHECK_EQ(weights.size(), info.num_row_);
|
|
|
|
auto view = page.GetView();
|
|
ParallelFor(view.Size(), n_threads_, [&](size_t fidx) {
|
|
auto column = view[fidx];
|
|
auto &sketch = sketches_[fidx];
|
|
sketch.Init(max_bins_);
|
|
// first pass
|
|
sketch.sum_total = 0.0;
|
|
for (auto c : column) {
|
|
sketch.sum_total += weights[c.index];
|
|
}
|
|
// second pass
|
|
if (IsCat(feature_types_, fidx)) {
|
|
for (auto c : column) {
|
|
categories_[fidx].emplace(c.fvalue);
|
|
}
|
|
} else {
|
|
for (auto c : column) {
|
|
sketch.Push(c.fvalue, weights[c.index], max_bins_);
|
|
}
|
|
}
|
|
|
|
if (!IsCat(feature_types_, fidx) && !column.empty()) {
|
|
sketch.Finalize(max_bins_);
|
|
}
|
|
});
|
|
monitor_.Stop(__func__);
|
|
}
|
|
} // namespace common
|
|
} // namespace xgboost
|