* Re-implement ROC-AUC. * Binary * MultiClass * LTR * Add documents. This PR resolves a few issues: - Define a value when the dataset is invalid, which can happen if there's an empty dataset, or when the dataset contains only positive or negative values. - Define ROC-AUC for multi-class classification. - Define weighted average value for distributed setting. - A correct implementation for learning to rank task. Previous implementation is just binary classification with averaging across groups, which doesn't measure ordered learning to rank.
134 lines
5.1 KiB
C++
134 lines
5.1 KiB
C++
#include <xgboost/metric.h>
|
|
#include "../helpers.h"
|
|
|
|
namespace xgboost {
|
|
namespace metric {
|
|
|
|
TEST(Metric, DeclareUnifiedTest(BinaryAUC)) {
|
|
auto tparam = xgboost::CreateEmptyGenericParam(GPUIDX);
|
|
std::unique_ptr<Metric> uni_ptr {Metric::Create("auc", &tparam)};
|
|
Metric * metric = uni_ptr.get();
|
|
ASSERT_STREQ(metric->Name(), "auc");
|
|
|
|
// Binary
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}), 1.0f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {1, 0}), 0.0f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 0}, {0, 1}), 0.5f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {1, 1}, {0, 1}), 0.5f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 0}, {1, 0}), 0.5f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {1, 1}, {1, 0}), 0.5f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {1, 0, 0}, {0, 0, 1}), 0.25f, 1e-10);
|
|
|
|
// Invalid dataset
|
|
MetaInfo info;
|
|
info.labels_ = {0, 0};
|
|
float auc = metric->Eval({1, 1}, info, false);
|
|
ASSERT_TRUE(std::isnan(auc));
|
|
info.labels_ = HostDeviceVector<float>{};
|
|
auc = metric->Eval(HostDeviceVector<float>{}, info, false);
|
|
ASSERT_TRUE(std::isnan(auc));
|
|
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 1, 0, 1}, {0, 1, 0, 1}), 1.0f, 1e-10);
|
|
|
|
// AUC with instance weights
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{0.9f, 0.1f, 0.4f, 0.3f},
|
|
{0, 0, 1, 1},
|
|
{1.0f, 3.0f, 2.0f, 4.0f}),
|
|
0.75f, 0.001f);
|
|
|
|
// regression test case
|
|
ASSERT_NEAR(GetMetricEval(
|
|
metric,
|
|
{0.79523796, 0.5201713, 0.79523796, 0.24273258, 0.53452194,
|
|
0.53452194, 0.24273258, 0.5201713, 0.79523796, 0.53452194,
|
|
0.24273258, 0.53452194, 0.79523796, 0.5201713, 0.24273258,
|
|
0.5201713, 0.5201713, 0.53452194, 0.5201713, 0.53452194},
|
|
{0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0}),
|
|
0.5, 1e-10);
|
|
}
|
|
|
|
TEST(Metric, DeclareUnifiedTest(MultiAUC)) {
|
|
auto tparam = CreateEmptyGenericParam(GPUIDX);
|
|
std::unique_ptr<Metric> uni_ptr{
|
|
Metric::Create("auc", &tparam)};
|
|
auto metric = uni_ptr.get();
|
|
|
|
// MultiClass
|
|
// 3x3
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{
|
|
1.0f, 0.0f, 0.0f, // p_0
|
|
0.0f, 1.0f, 0.0f, // p_1
|
|
0.0f, 0.0f, 1.0f // p_2
|
|
},
|
|
{0, 1, 2}),
|
|
1.0f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{
|
|
1.0f, 0.0f, 0.0f, // p_0
|
|
0.0f, 1.0f, 0.0f, // p_1
|
|
0.0f, 0.0f, 1.0f // p_2
|
|
},
|
|
{2, 1, 0}),
|
|
0.5f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{
|
|
1.0f, 0.0f, 0.0f, // p_0
|
|
0.0f, 1.0f, 0.0f, // p_1
|
|
0.0f, 0.0f, 1.0f // p_2
|
|
},
|
|
{2, 0, 1}),
|
|
0.25f, 1e-10);
|
|
|
|
// invalid dataset
|
|
float auc = GetMetricEval(metric,
|
|
{
|
|
1.0f, 0.0f, 0.0f, // p_0
|
|
0.0f, 1.0f, 0.0f, // p_1
|
|
0.0f, 0.0f, 1.0f // p_2
|
|
},
|
|
{0, 1, 1}); // no class 2.
|
|
EXPECT_TRUE(std::isnan(auc)) << auc;
|
|
}
|
|
|
|
TEST(Metric, DeclareUnifiedTest(RankingAUC)) {
|
|
auto tparam = CreateEmptyGenericParam(GPUIDX);
|
|
std::unique_ptr<Metric> metric{Metric::Create("auc", &tparam)};
|
|
|
|
// single group
|
|
EXPECT_NEAR(GetMetricEval(metric.get(), {0.7f, 0.2f, 0.3f, 0.6f},
|
|
{1.0f, 0.8f, 0.4f, 0.2f}, /*weights=*/{},
|
|
{0, 4}),
|
|
0.5f, 1e-10);
|
|
|
|
// multi group
|
|
EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1, 2, 0, 1, 2},
|
|
{0, 1, 2, 0, 1, 2}, /*weights=*/{}, {0, 3, 6}),
|
|
1.0f, 1e-10);
|
|
|
|
EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1, 2, 0, 1, 2},
|
|
{0, 1, 2, 0, 1, 2}, /*weights=*/{1.0f, 2.0f},
|
|
{0, 3, 6}),
|
|
1.0f, 1e-10);
|
|
|
|
// AUC metric for grouped datasets - exception scenarios
|
|
ASSERT_TRUE(std::isnan(
|
|
GetMetricEval(metric.get(), {0, 1, 2}, {0, 0, 0}, {}, {0, 2, 3})));
|
|
|
|
// regression case
|
|
HostDeviceVector<float> predt{0.33935383, 0.5149714, 0.32138085, 1.4547751,
|
|
1.2010975, 0.42651367, 0.23104341, 0.83610827,
|
|
0.8494239, 0.07136688, 0.5623144, 0.8086237,
|
|
1.5066161, -4.094787, 0.76887935, -2.4082742};
|
|
std::vector<bst_group_t> groups{0, 7, 16};
|
|
std::vector<float> labels{1., 0., 0., 1., 2., 1., 0., 0.,
|
|
0., 0., 0., 0., 1., 0., 1., 0.};
|
|
|
|
EXPECT_NEAR(GetMetricEval(metric.get(), std::move(predt), labels,
|
|
/*weights=*/{}, groups),
|
|
0.769841f, 1e-6);
|
|
}
|
|
} // namespace metric
|
|
} // namespace xgboost
|