xgboost/src/common/random.h
Jiaming Yuan bcc0277338
Re-implement ROC-AUC. (#6747)
* Re-implement ROC-AUC.

* Binary
* MultiClass
* LTR
* Add documents.

This PR resolves a few issues:
  - Define a value when the dataset is invalid, which can happen if there's an
  empty dataset, or when the dataset contains only positive or negative values.
  - Define ROC-AUC for multi-class classification.
  - Define weighted average value for distributed setting.
  - A correct implementation for learning to rank task.  Previous
  implementation is just binary classification with averaging across groups,
  which doesn't measure ordered learning to rank.
2021-03-20 16:52:40 +08:00

220 lines
6.4 KiB
C++

/*!
* Copyright 2015-2020 by Contributors
* \file random.h
* \brief Utility related to random.
* \author Tianqi Chen
*/
#ifndef XGBOOST_COMMON_RANDOM_H_
#define XGBOOST_COMMON_RANDOM_H_
#include <rabit/rabit.h>
#include <xgboost/logging.h>
#include <algorithm>
#include <functional>
#include <vector>
#include <limits>
#include <map>
#include <memory>
#include <numeric>
#include <random>
#include <utility>
#include "xgboost/host_device_vector.h"
#include "common.h"
namespace xgboost {
namespace common {
/*!
* \brief Define mt19937 as default type Random Engine.
*/
using RandomEngine = std::mt19937;
#if XGBOOST_CUSTOMIZE_GLOBAL_PRNG
/*!
* \brief An customized random engine, used to be plugged in PRNG from other systems.
* The implementation of this library is not provided by xgboost core library.
* Instead the other library can implement this class, which will be used as GlobalRandomEngine
* If XGBOOST_RANDOM_CUSTOMIZE = 1, by default this is switched off.
*/
class CustomGlobalRandomEngine {
public:
/*! \brief The result type */
using result_type = uint32_t;
/*! \brief The minimum of random numbers generated */
inline static constexpr result_type min() {
return 0;
}
/*! \brief The maximum random numbers generated */
inline static constexpr result_type max() {
return std::numeric_limits<result_type>::max();
}
/*!
* \brief seed function, to be implemented
* \param val The value of the seed.
*/
void seed(result_type val);
/*!
* \return next random number.
*/
result_type operator()();
};
/*!
* \brief global random engine
*/
typedef CustomGlobalRandomEngine GlobalRandomEngine;
#else
/*!
* \brief global random engine
*/
using GlobalRandomEngine = RandomEngine;
#endif // XGBOOST_CUSTOMIZE_GLOBAL_PRNG
/*!
* \brief global singleton of a random engine.
* This random engine is thread-local and
* only visible to current thread.
*/
GlobalRandomEngine& GlobalRandom(); // NOLINT(*)
/*
* Original paper:
* Weighted Random Sampling (2005; Efraimidis, Spirakis)
*
* Blog:
* https://timvieira.github.io/blog/post/2019/09/16/algorithms-for-sampling-without-replacement/
*/
template <typename T>
std::vector<T> WeightedSamplingWithoutReplacement(
std::vector<T> const &array, std::vector<float> const &weights, size_t n) {
// ES sampling.
CHECK_EQ(array.size(), weights.size());
std::vector<float> keys(weights.size());
std::uniform_real_distribution<float> dist;
auto& rng = GlobalRandom();
for (size_t i = 0; i < array.size(); ++i) {
auto w = std::max(weights.at(i), kRtEps);
auto u = dist(rng);
auto k = std::log(u) / w;
keys[i] = k;
}
auto ind = ArgSort<size_t>(Span<float>{keys}, std::greater<>{});
ind.resize(n);
std::vector<T> results(ind.size());
for (size_t k = 0; k < ind.size(); ++k) {
auto idx = ind[k];
results[k] = array[idx];
}
return results;
}
/**
* \class ColumnSampler
*
* \brief Handles selection of columns due to colsample_bytree, colsample_bylevel and
* colsample_bynode parameters. Should be initialised before tree construction and to
* reset when tree construction is completed.
*/
class ColumnSampler {
std::shared_ptr<HostDeviceVector<bst_feature_t>> feature_set_tree_;
std::map<int, std::shared_ptr<HostDeviceVector<bst_feature_t>>> feature_set_level_;
std::vector<float> feature_weights_;
float colsample_bylevel_{1.0f};
float colsample_bytree_{1.0f};
float colsample_bynode_{1.0f};
GlobalRandomEngine rng_;
public:
std::shared_ptr<HostDeviceVector<bst_feature_t>> ColSample(
std::shared_ptr<HostDeviceVector<bst_feature_t>> p_features, float colsample);
/**
* \brief Column sampler constructor.
* \note This constructor manually sets the rng seed
*/
explicit ColumnSampler(uint32_t seed) {
rng_.seed(seed);
}
/**
* \brief Column sampler constructor.
* \note This constructor synchronizes the RNG seed across processes.
*/
ColumnSampler() {
uint32_t seed = common::GlobalRandom()();
rabit::Broadcast(&seed, sizeof(seed), 0);
rng_.seed(seed);
}
/**
* \brief Initialise this object before use.
*
* \param num_col
* \param colsample_bynode
* \param colsample_bylevel
* \param colsample_bytree
* \param skip_index_0 (Optional) True to skip index 0.
*/
void Init(int64_t num_col, std::vector<float> feature_weights,
float colsample_bynode, float colsample_bylevel,
float colsample_bytree, bool skip_index_0 = false) {
feature_weights_ = std::move(feature_weights);
colsample_bylevel_ = colsample_bylevel;
colsample_bytree_ = colsample_bytree;
colsample_bynode_ = colsample_bynode;
if (feature_set_tree_ == nullptr) {
feature_set_tree_ = std::make_shared<HostDeviceVector<bst_feature_t>>();
}
Reset();
int begin_idx = skip_index_0 ? 1 : 0;
feature_set_tree_->Resize(num_col - begin_idx);
std::iota(feature_set_tree_->HostVector().begin(),
feature_set_tree_->HostVector().end(), begin_idx);
feature_set_tree_ = ColSample(feature_set_tree_, colsample_bytree_);
}
/**
* \brief Resets this object.
*/
void Reset() {
feature_set_tree_->Resize(0);
feature_set_level_.clear();
}
/**
* \brief Samples a feature set.
*
* \param depth The tree depth of the node at which to sample.
* \return The sampled feature set.
* \note If colsample_bynode_ < 1.0, this method creates a new feature set each time it
* is called. Therefore, it should be called only once per node.
* \note With distributed xgboost, this function must be called exactly once for the
* construction of each tree node, and must be called the same number of times in each
* process and with the same parameters to return the same feature set across processes.
*/
std::shared_ptr<HostDeviceVector<bst_feature_t>> GetFeatureSet(int depth) {
if (colsample_bylevel_ == 1.0f && colsample_bynode_ == 1.0f) {
return feature_set_tree_;
}
if (feature_set_level_.count(depth) == 0) {
// Level sampling, level does not yet exist so generate it
feature_set_level_[depth] = ColSample(feature_set_tree_, colsample_bylevel_);
}
if (colsample_bynode_ == 1.0f) {
// Level sampling
return feature_set_level_[depth];
}
// Need to sample for the node individually
return ColSample(feature_set_level_[depth], colsample_bynode_);
}
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_RANDOM_H_