* Remove GPU memory usage demo. * Add tests for demos. * Remove `silent`. * Remove shebang as it's not portable.
38 lines
1.4 KiB
Python
Executable File
38 lines
1.4 KiB
Python
Executable File
#!/usr/bin/python
|
|
import numpy as np
|
|
import xgboost as xgb
|
|
|
|
### load data in do training
|
|
train = np.loadtxt('./data/training.csv', delimiter=',', skiprows=1, converters={32: lambda x:int(x=='s'.encode('utf-8')) } )
|
|
label = train[:,32]
|
|
data = train[:,1:31]
|
|
weight = train[:,31]
|
|
dtrain = xgb.DMatrix( data, label=label, missing = -999.0, weight=weight )
|
|
param = {'max_depth':6, 'eta':0.1, 'objective':'binary:logitraw', 'nthread':4}
|
|
num_round = 120
|
|
|
|
print ('running cross validation, with preprocessing function')
|
|
# define the preprocessing function
|
|
# used to return the preprocessed training, test data, and parameter
|
|
# we can use this to do weight rescale, etc.
|
|
# as a example, we try to set scale_pos_weight
|
|
def fpreproc(dtrain, dtest, param):
|
|
label = dtrain.get_label()
|
|
ratio = float(np.sum(label == 0)) / np.sum(label==1)
|
|
param['scale_pos_weight'] = ratio
|
|
wtrain = dtrain.get_weight()
|
|
wtest = dtest.get_weight()
|
|
sum_weight = sum(wtrain) + sum(wtest)
|
|
wtrain *= sum_weight / sum(wtrain)
|
|
wtest *= sum_weight / sum(wtest)
|
|
dtrain.set_weight(wtrain)
|
|
dtest.set_weight(wtest)
|
|
return (dtrain, dtest, param)
|
|
|
|
# do cross validation, for each fold
|
|
# the dtrain, dtest, param will be passed into fpreproc
|
|
# then the return value of fpreproc will be used to generate
|
|
# results of that fold
|
|
xgb.cv(param, dtrain, num_round, nfold=5,
|
|
metrics={'ams@0.15', 'auc'}, seed = 0, fpreproc = fpreproc)
|