xgboost/tests/python/test_sparse_dmatrix.py
Jiaming Yuan 29a1356669
Deprecate reg:linear' in favor of reg:squarederror'. (#4267)
* Deprecate `reg:linear' in favor of `reg:squarederror'.
* Replace the use of `reg:linear'.
* Replace the use of `silent`.
2019-03-17 17:55:04 +08:00

34 lines
1.0 KiB
Python

import numpy as np
import xgboost as xgb
from scipy.sparse import rand
rng = np.random.RandomState(1)
param = {'max_depth': 3, 'objective': 'binary:logistic', 'verbosity': 0}
def test_sparse_dmatrix_csr():
nrow = 100
ncol = 1000
x = rand(nrow, ncol, density=0.0005, format='csr', random_state=rng)
assert x.indices.max() < ncol - 1
x.data[:] = 1
dtrain = xgb.DMatrix(x, label=np.random.binomial(1, 0.3, nrow))
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
watchlist = [(dtrain, 'train')]
bst = xgb.train(param, dtrain, 5, watchlist)
bst.predict(dtrain)
def test_sparse_dmatrix_csc():
nrow = 1000
ncol = 100
x = rand(nrow, ncol, density=0.0005, format='csc', random_state=rng)
assert x.indices.max() < nrow - 1
x.data[:] = 1
dtrain = xgb.DMatrix(x, label=np.random.binomial(1, 0.3, nrow))
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
watchlist = [(dtrain, 'train')]
bst = xgb.train(param, dtrain, 5, watchlist)
bst.predict(dtrain)