xgboost/src/objective/regression_loss.h
Jiaming Yuan fdf533f2b9
[POC] Experimental support for l1 error. (#7812)
Support adaptive tree, a feature supported by both sklearn and lightgbm.  The tree leaf is recomputed based on residue of labels and predictions after construction.

For l1 error, the optimal value is the median (50 percentile).

This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
2022-04-26 21:41:55 +08:00

156 lines
5.6 KiB
C++

/*!
* Copyright 2017-2022 XGBoost contributors
*/
#ifndef XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
#define XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
#include <dmlc/omp.h>
#include <xgboost/logging.h>
#include <algorithm>
#include "xgboost/task.h"
#include "../common/math.h"
namespace xgboost {
namespace obj {
// common regressions
// linear regression
struct LinearSquareLoss {
// duplication is necessary, as __device__ specifier
// cannot be made conditional on template parameter
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
XGBOOST_DEVICE static bool CheckLabel(bst_float) { return true; }
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
return predt - label;
}
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float, bst_float) {
return 1.0f;
}
template <typename T>
static T PredTransform(T x) { return x; }
template <typename T>
static T FirstOrderGradient(T predt, T label) { return predt - label; }
template <typename T>
static T SecondOrderGradient(T predt, T label) { return T(1.0f); }
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
static const char* LabelErrorMsg() { return ""; }
static const char* DefaultEvalMetric() { return "rmse"; }
static const char* Name() { return "reg:squarederror"; }
static ObjInfo Info() { return {ObjInfo::kRegression, true, false}; }
};
struct SquaredLogError {
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
XGBOOST_DEVICE static bool CheckLabel(bst_float label) {
return label > -1;
}
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
predt = fmaxf(predt, -1 + 1e-6); // ensure correct value for log1p
return (std::log1p(predt) - std::log1p(label)) / (predt + 1);
}
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
predt = fmaxf(predt, -1 + 1e-6);
float res = (-std::log1p(predt) + std::log1p(label) + 1) /
std::pow(predt + 1, 2);
res = fmaxf(res, 1e-6f);
return res;
}
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
static const char* LabelErrorMsg() {
return "label must be greater than -1 for rmsle so that log(label + 1) can be valid.";
}
static const char* DefaultEvalMetric() { return "rmsle"; }
static const char* Name() { return "reg:squaredlogerror"; }
static ObjInfo Info() { return ObjInfo::kRegression; }
};
// logistic loss for probability regression task
struct LogisticRegression {
// duplication is necessary, as __device__ specifier
// cannot be made conditional on template parameter
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return common::Sigmoid(x); }
XGBOOST_DEVICE static bool CheckLabel(bst_float x) { return x >= 0.0f && x <= 1.0f; }
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
return predt - label;
}
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float) {
const float eps = 1e-16f;
return fmaxf(predt * (1.0f - predt), eps);
}
template <typename T>
static T PredTransform(T x) { return common::Sigmoid(x); }
template <typename T>
static T FirstOrderGradient(T predt, T label) { return predt - label; }
template <typename T>
static T SecondOrderGradient(T predt, T label) {
const T eps = T(1e-16f);
return std::max(predt * (T(1.0f) - predt), eps);
}
static bst_float ProbToMargin(bst_float base_score) {
CHECK(base_score > 0.0f && base_score < 1.0f)
<< "base_score must be in (0,1) for logistic loss, got: " << base_score;
return -logf(1.0f / base_score - 1.0f);
}
static const char* LabelErrorMsg() {
return "label must be in [0,1] for logistic regression";
}
static const char* DefaultEvalMetric() { return "rmse"; }
static const char* Name() { return "reg:logistic"; }
static ObjInfo Info() { return ObjInfo::kRegression; }
};
// logistic loss for binary classification task
struct LogisticClassification : public LogisticRegression {
static const char* DefaultEvalMetric() { return "logloss"; }
static const char* Name() { return "binary:logistic"; }
static ObjInfo Info() { return ObjInfo::kBinary; }
};
// logistic loss, but predict un-transformed margin
struct LogisticRaw : public LogisticRegression {
// duplication is necessary, as __device__ specifier
// cannot be made conditional on template parameter
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
predt = common::Sigmoid(predt);
return predt - label;
}
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float) {
const float eps = 1e-16f;
predt = common::Sigmoid(predt);
return fmaxf(predt * (1.0f - predt), eps);
}
template <typename T>
static T PredTransform(T x) { return x; }
template <typename T>
static T FirstOrderGradient(T predt, T label) {
predt = common::Sigmoid(predt);
return predt - label;
}
template <typename T>
static T SecondOrderGradient(T predt, T label) {
const T eps = T(1e-16f);
predt = common::Sigmoid(predt);
return std::max(predt * (T(1.0f) - predt), eps);
}
static bst_float ProbToMargin(bst_float base_score) {
return base_score;
}
static const char* DefaultEvalMetric() { return "logloss"; }
static const char* Name() { return "binary:logitraw"; }
static ObjInfo Info() { return ObjInfo::kRegression; }
};
} // namespace obj
} // namespace xgboost
#endif // XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_