xgboost/src/common/numeric.h
Dmitry Razdoburdin 5bd849f1b5
Unify the partitioner for hist and approx.
Co-authored-by: dmitry.razdoburdin <drazdobu@jfldaal005.jf.intel.com>
Co-authored-by: jiamingy <jm.yuan@outlook.com>
2022-10-20 02:49:20 +08:00

135 lines
4.1 KiB
C++

/*!
* Copyright 2022, XGBoost contributors.
*/
#ifndef XGBOOST_COMMON_NUMERIC_H_
#define XGBOOST_COMMON_NUMERIC_H_
#include <dmlc/common.h> // OMPException
#include <algorithm> // std::max
#include <iterator> // std::iterator_traits
#include <vector>
#include "common.h" // AssertGPUSupport
#include "threading_utils.h" // MemStackAllocator, DefaultMaxThreads
#include "xgboost/generic_parameters.h" // Context
#include "xgboost/host_device_vector.h" // HostDeviceVector
namespace xgboost {
namespace common {
/**
* \brief Run length encode on CPU, input must be sorted.
*/
template <typename Iter, typename Idx>
void RunLengthEncode(Iter begin, Iter end, std::vector<Idx>* p_out) {
auto& out = *p_out;
out = std::vector<Idx>{0};
size_t n = std::distance(begin, end);
for (size_t i = 1; i < n; ++i) {
if (begin[i] != begin[i - 1]) {
out.push_back(i);
}
}
if (out.back() != n) {
out.push_back(n);
}
}
/**
* \brief Varient of std::partial_sum, out_it should point to a container that has n + 1
* elements. Useful for constructing a CSR indptr.
*/
template <typename InIt, typename OutIt, typename T>
void PartialSum(int32_t n_threads, InIt begin, InIt end, T init, OutIt out_it) {
static_assert(std::is_same<T, typename std::iterator_traits<InIt>::value_type>::value, "");
static_assert(std::is_same<T, typename std::iterator_traits<OutIt>::value_type>::value, "");
// The number of threads is pegged to the batch size. If the OMP block is parallelized
// on anything other than the batch/block size, it should be reassigned
auto n = static_cast<size_t>(std::distance(begin, end));
const size_t batch_threads =
std::max(static_cast<size_t>(1), std::min(n, static_cast<size_t>(n_threads)));
MemStackAllocator<T, DefaultMaxThreads()> partial_sums(batch_threads);
size_t block_size = n / batch_threads;
dmlc::OMPException exc;
#pragma omp parallel num_threads(batch_threads)
{
#pragma omp for
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
exc.Run([&]() {
size_t ibegin = block_size * tid;
size_t iend = (tid == (batch_threads - 1) ? n : (block_size * (tid + 1)));
T running_sum = 0;
for (size_t ridx = ibegin; ridx < iend; ++ridx) {
running_sum += *(begin + ridx);
*(out_it + 1 + ridx) = running_sum;
}
});
}
#pragma omp single
{
exc.Run([&]() {
partial_sums[0] = init;
for (size_t i = 1; i < batch_threads; ++i) {
partial_sums[i] = partial_sums[i - 1] + *(out_it + i * block_size);
}
});
}
#pragma omp for
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
exc.Run([&]() {
size_t ibegin = block_size * tid;
size_t iend = (tid == (batch_threads - 1) ? n : (block_size * (tid + 1)));
for (size_t i = ibegin; i < iend; ++i) {
*(out_it + 1 + i) += partial_sums[tid];
}
});
}
}
exc.Rethrow();
}
namespace cuda {
double Reduce(Context const* ctx, HostDeviceVector<float> const& values);
#if !defined(XGBOOST_USE_CUDA)
inline double Reduce(Context const*, HostDeviceVector<float> const&) {
AssertGPUSupport();
return 0;
}
#endif // !defined(XGBOOST_USE_CUDA)
} // namespace cuda
/**
* \brief Reduction with summation.
*/
double Reduce(Context const* ctx, HostDeviceVector<float> const& values);
template <typename It>
void Iota(Context const* ctx, It first, It last,
typename std::iterator_traits<It>::value_type const& value) {
auto n = std::distance(first, last);
std::int32_t n_threads = ctx->Threads();
const size_t block_size = n / n_threads + !!(n % n_threads);
dmlc::OMPException exc;
#pragma omp parallel num_threads(n_threads)
{
exc.Run([&]() {
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * block_size;
const size_t iend = std::min(ibegin + block_size, static_cast<size_t>(n));
for (size_t i = ibegin; i < iend; ++i) {
first[i] = i + value;
}
});
}
}
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_NUMERIC_H_