xgboost/tests/python-gpu/test_gpu_updaters.py
Rory Mitchell b47b5ac771
Use hypothesis (#5759)
* Use hypothesis

* Allow int64 array interface for groups

* Add packages to Windows CI

* Add to travis

* Make sure device index is set correctly

* Fix dask-cudf test

* appveyor
2020-06-16 12:45:59 +12:00

101 lines
3.7 KiB
Python

import numpy as np
import sys
import pytest
import xgboost as xgb
from hypothesis import given, strategies, assume, settings, note
sys.path.append("tests/python")
import testing as tm
parameter_strategy = strategies.fixed_dictionaries({
'max_depth': strategies.integers(0, 11),
'max_leaves': strategies.integers(0, 256),
'max_bin': strategies.integers(2, 1024),
'grow_policy': strategies.sampled_from(['lossguide', 'depthwise']),
'single_precision_histogram': strategies.booleans(),
'min_child_weight': strategies.floats(0.5, 2.0),
'seed': strategies.integers(0, 10),
# We cannot enable subsampling as the training loss can increase
# 'subsample': strategies.floats(0.5, 1.0),
'colsample_bytree': strategies.floats(0.5, 1.0),
'colsample_bylevel': strategies.floats(0.5, 1.0),
}).filter(lambda x: (x['max_depth'] > 0 or x['max_leaves'] > 0) and (
x['max_depth'] > 0 or x['grow_policy'] == 'lossguide'))
def train_result(param, dmat, num_rounds):
result = {}
xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False,
evals_result=result)
return result
class TestGPUUpdaters:
@given(parameter_strategy, strategies.integers(1, 20),
tm.dataset_strategy)
@settings(deadline=None)
def test_gpu_hist(self, param, num_rounds, dataset):
param['tree_method'] = 'gpu_hist'
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), num_rounds)
note(result)
assert tm.non_increasing(result['train'][dataset.metric])
@pytest.mark.skipif(**tm.no_cupy())
@given(parameter_strategy, strategies.integers(1, 20),
tm.dataset_strategy)
@settings(deadline=None)
def test_gpu_hist_device_dmatrix(self, param, num_rounds, dataset):
# We cannot handle empty dataset yet
assume(len(dataset.y) > 0)
param['tree_method'] = 'gpu_hist'
param = dataset.set_params(param)
result = train_result(param, dataset.get_device_dmat(), num_rounds)
note(result)
assert tm.non_increasing(result['train'][dataset.metric])
@given(parameter_strategy, strategies.integers(1, 20),
tm.dataset_strategy)
@settings(deadline=None)
def test_external_memory(self, param, num_rounds, dataset):
# We cannot handle empty dataset yet
assume(len(dataset.y) > 0)
param['tree_method'] = 'gpu_hist'
param = dataset.set_params(param)
external_result = train_result(param, dataset.get_external_dmat(), num_rounds)
assert tm.non_increasing(external_result['train'][dataset.metric])
def test_empty_dmatrix_prediction(self):
# FIXME(trivialfis): This should be done with all updaters
kRows = 0
kCols = 100
X = np.empty((kRows, kCols))
y = np.empty((kRows))
dtrain = xgb.DMatrix(X, y)
bst = xgb.train({'verbosity': 2,
'tree_method': 'gpu_hist',
'gpu_id': 0},
dtrain,
verbose_eval=True,
num_boost_round=6,
evals=[(dtrain, 'Train')])
kRows = 100
X = np.random.randn(kRows, kCols)
dtest = xgb.DMatrix(X)
predictions = bst.predict(dtest)
np.testing.assert_allclose(predictions, 0.5, 1e-6)
@pytest.mark.mgpu
@given(tm.dataset_strategy, strategies.integers(0, 10))
@settings(deadline=None, max_examples=10)
def test_specified_gpu_id_gpu_update(self, dataset, gpu_id):
param = {'tree_method': 'gpu_hist', 'gpu_id': gpu_id}
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), 10)
assert tm.non_increasing(result['train'][dataset.metric])