Jiaming Yuan a55d3bdde2
[backport] Fix pylint errors. (#7967) (#7981)
* Fix pylint errors. (#7967)

* Rebase error.
2022-06-07 23:09:53 +08:00

562 lines
19 KiB
Python

# coding: utf-8
# pylint: disable=invalid-name, too-many-statements
# pylint: disable=too-many-arguments
"""Callback library containing training routines. See :doc:`Callback Functions
</python/callbacks>` for a quick introduction.
"""
from abc import ABC
import collections
import os
import pickle
from typing import Callable, List, Optional, Union, Dict, Tuple, TypeVar, cast
from typing import Sequence
import numpy
from . import rabit
from .core import Booster, DMatrix, XGBoostError, _get_booster_layer_trees
from .compat import STRING_TYPES
__all__ = [
"TrainingCallback",
"LearningRateScheduler",
"EarlyStopping",
"EvaluationMonitor",
"TrainingCheckPoint",
]
_Score = Union[float, Tuple[float, float]]
_ScoreList = Union[List[float], List[Tuple[float, float]]]
# pylint: disable=unused-argument
class TrainingCallback(ABC):
'''Interface for training callback.
.. versionadded:: 1.3.0
'''
EvalsLog = Dict[str, Dict[str, _ScoreList]]
def __init__(self) -> None:
pass
def before_training(self, model):
'''Run before training starts.'''
return model
def after_training(self, model):
'''Run after training is finished.'''
return model
def before_iteration(self, model, epoch: int, evals_log: EvalsLog) -> bool:
'''Run before each iteration. Return True when training should stop.'''
return False
def after_iteration(self, model, epoch: int, evals_log: EvalsLog) -> bool:
'''Run after each iteration. Return True when training should stop.'''
return False
def _aggcv(rlist: List[str]) -> List[Tuple[str, float, float]]:
# pylint: disable=invalid-name, too-many-locals
"""Aggregate cross-validation results.
"""
cvmap: Dict[Tuple[int, str], List[float]] = {}
idx = rlist[0].split()[0]
for line in rlist:
arr: List[str] = line.split()
assert idx == arr[0]
for metric_idx, it in enumerate(arr[1:]):
if not isinstance(it, str):
it = it.decode()
k, v = it.split(':')
if (metric_idx, k) not in cvmap:
cvmap[(metric_idx, k)] = []
cvmap[(metric_idx, k)].append(float(v))
msg = idx
results = []
for (_, name), s in sorted(cvmap.items(), key=lambda x: x[0][0]):
as_arr = numpy.array(s)
if not isinstance(msg, STRING_TYPES):
msg = msg.decode()
mean, std = numpy.mean(as_arr), numpy.std(as_arr)
results.extend([(name, mean, std)])
return results
# allreduce type
_ART = TypeVar("_ART")
def _allreduce_metric(score: _ART) -> _ART:
'''Helper function for computing customized metric in distributed
environment. Not strictly correct as many functions don't use mean value
as final result.
'''
world = rabit.get_world_size()
assert world != 0
if world == 1:
return score
if isinstance(score, tuple): # has mean and stdv
raise ValueError(
'xgboost.cv function should not be used in distributed environment.')
arr = numpy.array([score])
arr = rabit.allreduce(arr, rabit.Op.SUM) / world
return arr[0]
class CallbackContainer:
'''A special internal callback for invoking a list of other callbacks.
.. versionadded:: 1.3.0
'''
EvalsLog = TrainingCallback.EvalsLog
def __init__(
self,
callbacks: Sequence[TrainingCallback],
metric: Callable = None,
output_margin: bool = True,
is_cv: bool = False
) -> None:
self.callbacks = set(callbacks)
if metric is not None:
msg = 'metric must be callable object for monitoring. For ' + \
'builtin metrics, passing them in training parameter' + \
' will invoke monitor automatically.'
assert callable(metric), msg
self.metric = metric
self.history: TrainingCallback.EvalsLog = collections.OrderedDict()
self._output_margin = output_margin
self.is_cv = is_cv
if self.is_cv:
self.aggregated_cv = None
def before_training(self, model):
'''Function called before training.'''
for c in self.callbacks:
model = c.before_training(model=model)
msg = 'before_training should return the model'
if self.is_cv:
assert isinstance(model.cvfolds, list), msg
else:
assert isinstance(model, Booster), msg
return model
def after_training(self, model):
'''Function called after training.'''
for c in self.callbacks:
model = c.after_training(model=model)
msg = 'after_training should return the model'
if self.is_cv:
assert isinstance(model.cvfolds, list), msg
else:
assert isinstance(model, Booster), msg
if not self.is_cv:
num_parallel_tree, _ = _get_booster_layer_trees(model)
if model.attr('best_score') is not None:
model.best_score = float(cast(str, model.attr('best_score')))
model.best_iteration = int(cast(str, model.attr('best_iteration')))
# num_class is handled internally
model.set_attr(
best_ntree_limit=str((model.best_iteration + 1) * num_parallel_tree)
)
model.best_ntree_limit = int(cast(str, model.attr("best_ntree_limit")))
else:
# Due to compatibility with version older than 1.4, these attributes are
# added to Python object even if early stopping is not used.
model.best_iteration = model.num_boosted_rounds() - 1
model.set_attr(best_iteration=str(model.best_iteration))
model.best_ntree_limit = (model.best_iteration + 1) * num_parallel_tree
model.set_attr(best_ntree_limit=str(model.best_ntree_limit))
return model
def before_iteration(
self, model, epoch: int, dtrain: DMatrix, evals: List[Tuple[DMatrix, str]]
) -> bool:
'''Function called before training iteration.'''
return any(c.before_iteration(model, epoch, self.history)
for c in self.callbacks)
def _update_history(
self,
score: Union[List[Tuple[str, float]], List[Tuple[str, float, float]]],
epoch: int
) -> None:
for d in score:
name: str = d[0]
s: float = d[1]
if self.is_cv:
std = float(cast(Tuple[str, float, float], d)[2])
x: _Score = (s, std)
else:
x = s
splited_names = name.split('-')
data_name = splited_names[0]
metric_name = '-'.join(splited_names[1:])
x = _allreduce_metric(x)
if data_name not in self.history:
self.history[data_name] = collections.OrderedDict()
data_history = self.history[data_name]
if metric_name not in data_history:
data_history[metric_name] = cast(_ScoreList, [])
metric_history = data_history[metric_name]
if self.is_cv:
cast(List[Tuple[float, float]], metric_history).append(
cast(Tuple[float, float], x)
)
else:
cast(List[float], metric_history).append(cast(float, x))
def after_iteration(
self,
model,
epoch: int,
dtrain: DMatrix,
evals: Optional[List[Tuple[DMatrix, str]]],
) -> bool:
'''Function called after training iteration.'''
if self.is_cv:
scores = model.eval(epoch, self.metric, self._output_margin)
scores = _aggcv(scores)
self.aggregated_cv = scores
self._update_history(scores, epoch)
else:
evals = [] if evals is None else evals
for _, name in evals:
assert name.find('-') == -1, 'Dataset name should not contain `-`'
score: str = model.eval_set(evals, epoch, self.metric, self._output_margin)
splited = score.split()[1:] # into datasets
# split up `test-error:0.1234`
metric_score_str = [tuple(s.split(':')) for s in splited]
# convert to float
metric_score = [(n, float(s)) for n, s in metric_score_str]
self._update_history(metric_score, epoch)
ret = any(c.after_iteration(model, epoch, self.history)
for c in self.callbacks)
return ret
class LearningRateScheduler(TrainingCallback):
"""Callback function for scheduling learning rate.
.. versionadded:: 1.3.0
Parameters
----------
learning_rates :
If it's a callable object, then it should accept an integer parameter
`epoch` and returns the corresponding learning rate. Otherwise it
should be a sequence like list or tuple with the same size of boosting
rounds.
"""
def __init__(
self, learning_rates: Union[Callable[[int], float], Sequence[float]]
) -> None:
assert callable(learning_rates) or isinstance(
learning_rates, collections.abc.Sequence
)
if callable(learning_rates):
self.learning_rates = learning_rates
else:
self.learning_rates = lambda epoch: cast(Sequence, learning_rates)[epoch]
super().__init__()
def after_iteration(
self, model, epoch: int, evals_log: TrainingCallback.EvalsLog
) -> bool:
model.set_param("learning_rate", self.learning_rates(epoch))
return False
# pylint: disable=too-many-instance-attributes
class EarlyStopping(TrainingCallback):
"""Callback function for early stopping
.. versionadded:: 1.3.0
Parameters
----------
rounds :
Early stopping rounds.
metric_name :
Name of metric that is used for early stopping.
data_name :
Name of dataset that is used for early stopping.
maximize :
Whether to maximize evaluation metric. None means auto (discouraged).
save_best :
Whether training should return the best model or the last model.
min_delta :
Minimum absolute change in score to be qualified as an improvement.
.. versionadded:: 1.5.0
.. code-block:: python
clf = xgboost.XGBClassifier(tree_method="gpu_hist")
es = xgboost.callback.EarlyStopping(
rounds=2,
abs_tol=1e-3,
save_best=True,
maximize=False,
data_name="validation_0",
metric_name="mlogloss",
)
X, y = load_digits(return_X_y=True)
clf.fit(X, y, eval_set=[(X, y)], callbacks=[es])
"""
def __init__(
self,
rounds: int,
metric_name: Optional[str] = None,
data_name: Optional[str] = None,
maximize: Optional[bool] = None,
save_best: Optional[bool] = False,
min_delta: float = 0.0
) -> None:
self.data = data_name
self.metric_name = metric_name
self.rounds = rounds
self.save_best = save_best
self.maximize = maximize
self.stopping_history: TrainingCallback.EvalsLog = {}
self._min_delta = min_delta
if self._min_delta < 0:
raise ValueError("min_delta must be greater or equal to 0.")
self.current_rounds: int = 0
self.best_scores: dict = {}
self.starting_round: int = 0
super().__init__()
def before_training(self, model):
self.starting_round = model.num_boosted_rounds()
return model
def _update_rounds(
self, score: _Score, name: str, metric: str, model, epoch: int
) -> bool:
def get_s(x: _Score) -> float:
"""get score if it's cross validation history."""
return x[0] if isinstance(x, tuple) else x
def maximize(new: _Score, best: _Score) -> bool:
"""New score should be greater than the old one."""
return numpy.greater(get_s(new) - self._min_delta, get_s(best))
def minimize(new: _Score, best: _Score) -> bool:
"""New score should be smaller than the old one."""
return numpy.greater(get_s(best) - self._min_delta, get_s(new))
if self.maximize is None:
# Just to be compatibility with old behavior before 1.3. We should let
# user to decide.
maximize_metrics = ('auc', 'aucpr', 'map', 'ndcg', 'auc@',
'aucpr@', 'map@', 'ndcg@')
if metric != 'mape' and any(metric.startswith(x) for x in maximize_metrics):
self.maximize = True
else:
self.maximize = False
if self.maximize:
improve_op = maximize
else:
improve_op = minimize
assert improve_op
if not self.stopping_history: # First round
self.current_rounds = 0
self.stopping_history[name] = {}
self.stopping_history[name][metric] = cast(_ScoreList, [score])
self.best_scores[name] = {}
self.best_scores[name][metric] = [score]
model.set_attr(best_score=str(score), best_iteration=str(epoch))
elif not improve_op(score, self.best_scores[name][metric][-1]):
# Not improved
self.stopping_history[name][metric].append(score) # type: ignore
self.current_rounds += 1
else: # Improved
self.stopping_history[name][metric].append(score) # type: ignore
self.best_scores[name][metric].append(score)
record = self.stopping_history[name][metric][-1]
model.set_attr(best_score=str(record), best_iteration=str(epoch))
self.current_rounds = 0 # reset
if self.current_rounds >= self.rounds:
# Should stop
return True
return False
def after_iteration(self, model, epoch: int,
evals_log: TrainingCallback.EvalsLog) -> bool:
epoch += self.starting_round # training continuation
msg = 'Must have at least 1 validation dataset for early stopping.'
assert len(evals_log.keys()) >= 1, msg
data_name = ''
if self.data:
for d, _ in evals_log.items():
if d == self.data:
data_name = d
if not data_name:
raise ValueError('No dataset named:', self.data)
else:
# Use the last one as default.
data_name = list(evals_log.keys())[-1]
assert isinstance(data_name, str) and data_name
data_log = evals_log[data_name]
# Filter out scores that can not be used for early stopping.
if self.metric_name:
metric_name = self.metric_name
else:
# Use last metric by default.
assert isinstance(data_log, collections.OrderedDict)
metric_name = list(data_log.keys())[-1]
score = data_log[metric_name][-1]
return self._update_rounds(score, data_name, metric_name, model, epoch)
def after_training(self, model):
try:
if self.save_best:
model = model[: int(model.attr("best_iteration")) + 1]
except XGBoostError as e:
raise XGBoostError(
"`save_best` is not applicable to current booster"
) from e
return model
class EvaluationMonitor(TrainingCallback):
'''Print the evaluation result at each iteration.
.. versionadded:: 1.3.0
Parameters
----------
metric :
Extra user defined metric.
rank :
Which worker should be used for printing the result.
period :
How many epoches between printing.
show_stdv :
Used in cv to show standard deviation. Users should not specify it.
'''
def __init__(self, rank: int = 0, period: int = 1, show_stdv: bool = False) -> None:
self.printer_rank = rank
self.show_stdv = show_stdv
self.period = period
assert period > 0
# last error message, useful when early stopping and period are used together.
self._latest: Optional[str] = None
super().__init__()
def _fmt_metric(
self, data: str, metric: str, score: float, std: Optional[float]
) -> str:
if std is not None and self.show_stdv:
msg = f"\t{data + '-' + metric}:{score:.5f}+{std:.5f}"
else:
msg = f"\t{data + '-' + metric}:{score:.5f}"
return msg
def after_iteration(self, model, epoch: int,
evals_log: TrainingCallback.EvalsLog) -> bool:
if not evals_log:
return False
msg: str = f'[{epoch}]'
if rabit.get_rank() == self.printer_rank:
for data, metric in evals_log.items():
for metric_name, log in metric.items():
stdv: Optional[float] = None
if isinstance(log[-1], tuple):
score = log[-1][0]
stdv = log[-1][1]
else:
score = log[-1]
msg += self._fmt_metric(data, metric_name, score, stdv)
msg += '\n'
if (epoch % self.period) == 0 or self.period == 1:
rabit.tracker_print(msg)
self._latest = None
else:
# There is skipped message
self._latest = msg
return False
def after_training(self, model):
if rabit.get_rank() == self.printer_rank and self._latest is not None:
rabit.tracker_print(self._latest)
return model
class TrainingCheckPoint(TrainingCallback):
'''Checkpointing operation.
.. versionadded:: 1.3.0
Parameters
----------
directory :
Output model directory.
name :
pattern of output model file. Models will be saved as name_0.json, name_1.json,
name_2.json ....
as_pickle :
When set to True, all training parameters will be saved in pickle format, instead
of saving only the model.
iterations :
Interval of checkpointing. Checkpointing is slow so setting a larger number can
reduce performance hit.
'''
def __init__(
self,
directory: Union[str, os.PathLike],
name: str = 'model',
as_pickle: bool = False,
iterations: int = 100
) -> None:
self._path = os.fspath(directory)
self._name = name
self._as_pickle = as_pickle
self._iterations = iterations
self._epoch = 0
super().__init__()
def after_iteration(self, model, epoch: int,
evals_log: TrainingCallback.EvalsLog) -> bool:
if self._epoch == self._iterations:
path = os.path.join(self._path, self._name + '_' + str(epoch) +
('.pkl' if self._as_pickle else '.json'))
self._epoch = 0
if rabit.get_rank() == 0:
if self._as_pickle:
with open(path, 'wb') as fd:
pickle.dump(model, fd)
else:
model.save_model(path)
self._epoch += 1
return False