xgboost/tests/python-gpu/test_gpu_with_dask.py
Jiaming Yuan 608ebbe444
Fix GPU ID and prediction cache from pickle (#5086)
* Hack for saving GPU ID.

* Declare prediction cache on GBTree.

* Add a simple test.

* Add `auto` option for GPU Predictor.
2019-12-07 16:02:06 +08:00

94 lines
3.5 KiB
Python

import sys
import pytest
import numpy as np
import unittest
if sys.platform.startswith("win"):
pytest.skip("Skipping dask tests on Windows", allow_module_level=True)
try:
import dask.dataframe as dd
from xgboost import dask as dxgb
from dask_cuda import LocalCUDACluster
from dask.distributed import Client
import cudf
except ImportError:
pass
sys.path.append("tests/python")
from test_with_dask import generate_array # noqa
import testing as tm # noqa
class TestDistributedGPU(unittest.TestCase):
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.skipif(**tm.no_cudf())
@pytest.mark.skipif(**tm.no_dask_cudf())
@pytest.mark.skipif(**tm.no_dask_cuda())
def test_dask_dataframe(self):
with LocalCUDACluster() as cluster:
with Client(cluster) as client:
X, y = generate_array()
X = dd.from_dask_array(X)
y = dd.from_dask_array(y)
X = X.map_partitions(cudf.from_pandas)
y = y.map_partitions(cudf.from_pandas)
dtrain = dxgb.DaskDMatrix(client, X, y)
out = dxgb.train(client, {'tree_method': 'gpu_hist'},
dtrain=dtrain,
evals=[(dtrain, 'X')],
num_boost_round=2)
assert isinstance(out['booster'], dxgb.Booster)
assert len(out['history']['X']['rmse']) == 2
predictions = dxgb.predict(client, out, dtrain).compute()
assert isinstance(predictions, np.ndarray)
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.skipif(**tm.no_dask_cuda())
@pytest.mark.mgpu
def test_empty_dmatrix(self):
def _check_outputs(out, predictions):
assert isinstance(out['booster'], dxgb.Booster)
assert len(out['history']['validation']['rmse']) == 2
assert isinstance(predictions, np.ndarray)
assert predictions.shape[0] == 1
parameters = {'tree_method': 'gpu_hist', 'verbosity': 3,
'debug_synchronize': True}
with LocalCUDACluster() as cluster:
with Client(cluster) as client:
kRows, kCols = 1, 97
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = dxgb.DaskDMatrix(client, X, y)
out = dxgb.train(client, parameters,
dtrain=dtrain,
evals=[(dtrain, 'validation')],
num_boost_round=2)
predictions = dxgb.predict(client=client, model=out,
data=dtrain).compute()
_check_outputs(out, predictions)
# train has more rows than evals
valid = dtrain
kRows += 1
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = dxgb.DaskDMatrix(client, X, y)
out = dxgb.train(client, parameters,
dtrain=dtrain,
evals=[(valid, 'validation')],
num_boost_round=2)
predictions = dxgb.predict(client=client, model=out,
data=valid).compute()
_check_outputs(out, predictions)