xgboost/tests/python-gpu/test_gpu_pickling.py
Jiaming Yuan 3136185bc5
JSON configuration IO. (#5111)
* Add saving/loading JSON configuration.
* Implement Python pickle interface with new IO routines.
* Basic tests for training continuation.
2019-12-15 17:31:53 +08:00

133 lines
3.7 KiB
Python

'''Test model IO with pickle.'''
import pickle
import unittest
import numpy as np
import subprocess
import os
import json
import xgboost as xgb
from xgboost import XGBClassifier
model_path = './model.pkl'
def build_dataset():
N = 10
x = np.linspace(0, N*N, N*N)
x = x.reshape((N, N))
y = np.linspace(0, N, N)
return x, y
def save_pickle(bst, path):
with open(path, 'wb') as fd:
pickle.dump(bst, fd)
def load_pickle(path):
with open(path, 'rb') as fd:
bst = pickle.load(fd)
return bst
class TestPickling(unittest.TestCase):
def test_pickling(self):
x, y = build_dataset()
train_x = xgb.DMatrix(x, label=y)
param = {'tree_method': 'gpu_hist',
'verbosity': 1}
bst = xgb.train(param, train_x)
save_pickle(bst, model_path)
args = [
"pytest", "--verbose", "-s", "--fulltrace",
"./tests/python-gpu/load_pickle.py::TestLoadPickle::test_load_pkl"
]
command = ''
for arg in args:
command += arg
command += ' '
cuda_environment = {'CUDA_VISIBLE_DEVICES': '-1'}
env = os.environ.copy()
# Passing new_environment directly to `env' argument results
# in failure on Windows:
# Fatal Python error: _Py_HashRandomization_Init: failed to
# get random numbers to initialize Python
env.update(cuda_environment)
# Load model in a CPU only environment.
status = subprocess.call(command, env=env, shell=True)
assert status == 0
os.remove(model_path)
def test_pickled_predictor(self):
args_templae = [
"pytest",
"--verbose",
"-s",
"--fulltrace"]
x, y = build_dataset()
train_x = xgb.DMatrix(x, label=y)
param = {'tree_method': 'gpu_hist',
'verbosity': 1, 'predictor': 'gpu_predictor'}
bst = xgb.train(param, train_x)
config = json.loads(bst.save_config())
assert config['learner']['gradient_booster']['gbtree_train_param'][
'predictor'] == 'gpu_predictor'
save_pickle(bst, model_path)
args = args_templae.copy()
args.append(
"./tests/python-gpu/"
"load_pickle.py::TestLoadPickle::test_predictor_type_is_auto")
cuda_environment = {'CUDA_VISIBLE_DEVICES': '-1'}
env = os.environ.copy()
env.update(cuda_environment)
# Load model in a CPU only environment.
status = subprocess.call(args, env=env)
assert status == 0
args = args_templae.copy()
args.append(
"./tests/python-gpu/"
"load_pickle.py::TestLoadPickle::test_predictor_type_is_gpu")
# Load in environment that has GPU.
env = os.environ.copy()
assert 'CUDA_VISIBLE_DEVICES' not in env.keys()
status = subprocess.call(args, env=env)
assert status == 0
def test_predict_sklearn_pickle(self):
x, y = build_dataset()
kwargs = {'tree_method': 'gpu_hist',
'predictor': 'gpu_predictor',
'verbosity': 1,
'objective': 'binary:logistic',
'n_estimators': 10}
model = XGBClassifier(**kwargs)
model.fit(x, y)
save_pickle(model, "model.pkl")
del model
# load model
model: xgb.XGBClassifier = load_pickle("model.pkl")
os.remove("model.pkl")
gpu_pred = model.predict(x, output_margin=True)
# Switch to CPU predictor
bst = model.get_booster()
bst.set_param({'predictor': 'cpu_predictor'})
cpu_pred = model.predict(x, output_margin=True)
np.testing.assert_allclose(cpu_pred, gpu_pred, rtol=1e-5)