* Add inplace prediction for dask-cudf. * Remove Dockerfile.release, since it's not used anywhere * Use Conda exclusively in CUDF and GPU containers * Improve cupy memory copying. * Add skip marks to tests. * Add mgpu-cudf category on the CI to run all distributed tests. Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
64 lines
1.9 KiB
Python
64 lines
1.9 KiB
Python
'''Tests for running inplace prediction.'''
|
|
import unittest
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
import numpy as np
|
|
from scipy import sparse
|
|
|
|
import xgboost as xgb
|
|
|
|
|
|
def run_threaded_predict(X, rows, predict_func):
|
|
results = []
|
|
per_thread = 20
|
|
with ThreadPoolExecutor(max_workers=10) as e:
|
|
for i in range(0, rows, int(rows / per_thread)):
|
|
if hasattr(X, 'iloc'):
|
|
predictor = X.iloc[i:i+per_thread, :]
|
|
else:
|
|
predictor = X[i:i+per_thread, ...]
|
|
f = e.submit(predict_func, predictor)
|
|
results.append(f)
|
|
|
|
for f in results:
|
|
assert f.result()
|
|
|
|
|
|
class TestInplacePredict(unittest.TestCase):
|
|
'''Tests for running inplace prediction'''
|
|
def test_predict(self):
|
|
rows = 1000
|
|
cols = 10
|
|
|
|
np.random.seed(1994)
|
|
|
|
X = np.random.randn(rows, cols)
|
|
y = np.random.randn(rows)
|
|
dtrain = xgb.DMatrix(X, y)
|
|
|
|
booster = xgb.train({'tree_method': 'hist'},
|
|
dtrain, num_boost_round=10)
|
|
|
|
test = xgb.DMatrix(X[:10, ...])
|
|
predt_from_array = booster.inplace_predict(X[:10, ...])
|
|
predt_from_dmatrix = booster.predict(test)
|
|
|
|
np.testing.assert_allclose(predt_from_dmatrix, predt_from_array)
|
|
|
|
def predict_dense(x):
|
|
inplace_predt = booster.inplace_predict(x)
|
|
d = xgb.DMatrix(x)
|
|
copied_predt = booster.predict(d)
|
|
return np.all(copied_predt == inplace_predt)
|
|
|
|
for i in range(10):
|
|
run_threaded_predict(X, rows, predict_dense)
|
|
|
|
def predict_csr(x):
|
|
inplace_predt = booster.inplace_predict(sparse.csr_matrix(x))
|
|
d = xgb.DMatrix(x)
|
|
copied_predt = booster.predict(d)
|
|
return np.all(copied_predt == inplace_predt)
|
|
|
|
for i in range(10):
|
|
run_threaded_predict(X, rows, predict_csr)
|