* Use sphinx gallery to integrate examples. * Remove mock objects. * Add dask doc inventory.
184 lines
5.9 KiB
Python
184 lines
5.9 KiB
Python
'''
|
|
Demo for creating customized multi-class objective function
|
|
===========================================================
|
|
|
|
This demo is only applicable after (excluding) XGBoost 1.0.0, as before this version
|
|
XGBoost returns transformed prediction for multi-class objective function. More details
|
|
in comments.
|
|
|
|
See :doc:`/tutorials/custom_metric_obj` for detailed tutorial and notes.
|
|
|
|
'''
|
|
|
|
import numpy as np
|
|
import xgboost as xgb
|
|
from matplotlib import pyplot as plt
|
|
import argparse
|
|
|
|
np.random.seed(1994)
|
|
|
|
kRows = 100
|
|
kCols = 10
|
|
kClasses = 4 # number of classes
|
|
|
|
kRounds = 10 # number of boosting rounds.
|
|
|
|
# Generate some random data for demo.
|
|
X = np.random.randn(kRows, kCols)
|
|
y = np.random.randint(0, 4, size=kRows)
|
|
|
|
m = xgb.DMatrix(X, y)
|
|
|
|
|
|
def softmax(x):
|
|
'''Softmax function with x as input vector.'''
|
|
e = np.exp(x)
|
|
return e / np.sum(e)
|
|
|
|
|
|
def softprob_obj(predt: np.ndarray, data: xgb.DMatrix):
|
|
'''Loss function. Computing the gradient and approximated hessian (diagonal).
|
|
Reimplements the `multi:softprob` inside XGBoost.
|
|
|
|
'''
|
|
labels = data.get_label()
|
|
if data.get_weight().size == 0:
|
|
# Use 1 as weight if we don't have custom weight.
|
|
weights = np.ones((kRows, 1), dtype=float)
|
|
else:
|
|
weights = data.get_weight()
|
|
|
|
# The prediction is of shape (rows, classes), each element in a row
|
|
# represents a raw prediction (leaf weight, hasn't gone through softmax
|
|
# yet). In XGBoost 1.0.0, the prediction is transformed by a softmax
|
|
# function, fixed in later versions.
|
|
assert predt.shape == (kRows, kClasses)
|
|
|
|
grad = np.zeros((kRows, kClasses), dtype=float)
|
|
hess = np.zeros((kRows, kClasses), dtype=float)
|
|
|
|
eps = 1e-6
|
|
|
|
# compute the gradient and hessian, slow iterations in Python, only
|
|
# suitable for demo. Also the one in native XGBoost core is more robust to
|
|
# numeric overflow as we don't do anything to mitigate the `exp` in
|
|
# `softmax` here.
|
|
for r in range(predt.shape[0]):
|
|
target = labels[r]
|
|
p = softmax(predt[r, :])
|
|
for c in range(predt.shape[1]):
|
|
assert target >= 0 or target <= kClasses
|
|
g = p[c] - 1.0 if c == target else p[c]
|
|
g = g * weights[r]
|
|
h = max((2.0 * p[c] * (1.0 - p[c]) * weights[r]).item(), eps)
|
|
grad[r, c] = g
|
|
hess[r, c] = h
|
|
|
|
# Right now (XGBoost 1.0.0), reshaping is necessary
|
|
grad = grad.reshape((kRows * kClasses, 1))
|
|
hess = hess.reshape((kRows * kClasses, 1))
|
|
return grad, hess
|
|
|
|
|
|
def predict(booster: xgb.Booster, X):
|
|
'''A customized prediction function that converts raw prediction to
|
|
target class.
|
|
|
|
'''
|
|
# Output margin means we want to obtain the raw prediction obtained from
|
|
# tree leaf weight.
|
|
predt = booster.predict(X, output_margin=True)
|
|
out = np.zeros(kRows)
|
|
for r in range(predt.shape[0]):
|
|
# the class with maximum prob (not strictly prob as it haven't gone
|
|
# through softmax yet so it doesn't sum to 1, but result is the same
|
|
# for argmax).
|
|
i = np.argmax(predt[r])
|
|
out[r] = i
|
|
return out
|
|
|
|
|
|
def merror(predt: np.ndarray, dtrain: xgb.DMatrix):
|
|
y = dtrain.get_label()
|
|
# Like custom objective, the predt is untransformed leaf weight when custom objective
|
|
# is provided.
|
|
|
|
# With the use of `custom_metric` parameter in train function, custom metric receives
|
|
# raw input only when custom objective is also being used. Otherwise custom metric
|
|
# will receive transformed prediction.
|
|
assert predt.shape == (kRows, kClasses)
|
|
out = np.zeros(kRows)
|
|
for r in range(predt.shape[0]):
|
|
i = np.argmax(predt[r])
|
|
out[r] = i
|
|
|
|
assert y.shape == out.shape
|
|
|
|
errors = np.zeros(kRows)
|
|
errors[y != out] = 1.0
|
|
return 'PyMError', np.sum(errors) / kRows
|
|
|
|
|
|
def plot_history(custom_results, native_results):
|
|
fig, axs = plt.subplots(2, 1)
|
|
ax0 = axs[0]
|
|
ax1 = axs[1]
|
|
|
|
pymerror = custom_results['train']['PyMError']
|
|
merror = native_results['train']['merror']
|
|
|
|
x = np.arange(0, kRounds, 1)
|
|
ax0.plot(x, pymerror, label='Custom objective')
|
|
ax0.legend()
|
|
ax1.plot(x, merror, label='multi:softmax')
|
|
ax1.legend()
|
|
|
|
plt.show()
|
|
|
|
|
|
def main(args):
|
|
custom_results = {}
|
|
# Use our custom objective function
|
|
booster_custom = xgb.train({'num_class': kClasses,
|
|
'disable_default_eval_metric': True},
|
|
m,
|
|
num_boost_round=kRounds,
|
|
obj=softprob_obj,
|
|
custom_metric=merror,
|
|
evals_result=custom_results,
|
|
evals=[(m, 'train')])
|
|
|
|
predt_custom = predict(booster_custom, m)
|
|
|
|
native_results = {}
|
|
# Use the same objective function defined in XGBoost.
|
|
booster_native = xgb.train({'num_class': kClasses,
|
|
"objective": "multi:softmax",
|
|
'eval_metric': 'merror'},
|
|
m,
|
|
num_boost_round=kRounds,
|
|
evals_result=native_results,
|
|
evals=[(m, 'train')])
|
|
predt_native = booster_native.predict(m)
|
|
|
|
# We are reimplementing the loss function in XGBoost, so it should
|
|
# be the same for normal cases.
|
|
assert np.all(predt_custom == predt_native)
|
|
np.testing.assert_allclose(custom_results['train']['PyMError'],
|
|
native_results['train']['merror'])
|
|
|
|
if args.plot != 0:
|
|
plot_history(custom_results, native_results)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(
|
|
description='Arguments for custom softmax objective function demo.')
|
|
parser.add_argument(
|
|
'--plot',
|
|
type=int,
|
|
default=1,
|
|
help='Set to 0 to disable plotting the evaluation history.')
|
|
args = parser.parse_args()
|
|
main(args)
|