* [R] make sure things work for a single split model; fixes #2191 * [R] add option use_int_id to xgb.model.dt.tree * [R] add example of exporting tree plot to a file * [R] set save_period = NULL as default in xgboost() to be the same as in xgb.train; fixes #2182 * [R] it's a good practice after CRAN releases to bump up package version in dev * [R] allow xgb.DMatrix construction from integer dense matrices * [R] xgb.DMatrix: silent parameter; improve documentation * [R] xgb.model.dt.tree code style changes * [R] update NEWS with parameter changes * [R] code safety & style; handle non-strict matrix and inherited classes of input and model; fixes #2242 * [R] change to x.y.z.p R-package versioning scheme and set version to 0.6.4.3 * [R] add an R package versioning section to the contributors guide * [R] R-package/README.md: clean up the redundant old installation instructions, link the contributors guide
615 lines
22 KiB
R
615 lines
22 KiB
R
#' Callback closures for booster training.
|
|
#'
|
|
#' These are used to perform various service tasks either during boosting iterations or at the end.
|
|
#' This approach helps to modularize many of such tasks without bloating the main training methods,
|
|
#' and it offers .
|
|
#'
|
|
#' @details
|
|
#' By default, a callback function is run after each boosting iteration.
|
|
#' An R-attribute \code{is_pre_iteration} could be set for a callback to define a pre-iteration function.
|
|
#'
|
|
#' When a callback function has \code{finalize} parameter, its finalizer part will also be run after
|
|
#' the boosting is completed.
|
|
#'
|
|
#' WARNING: side-effects!!! Be aware that these callback functions access and modify things in
|
|
#' the environment from which they are called from, which is a fairly uncommon thing to do in R.
|
|
#'
|
|
#' To write a custom callback closure, make sure you first understand the main concepts about R envoronments.
|
|
#' Check either R documentation on \code{\link[base]{environment}} or the
|
|
#' \href{http://adv-r.had.co.nz/Environments.html}{Environments chapter} from the "Advanced R"
|
|
#' book by Hadley Wickham. Further, the best option is to read the code of some of the existing callbacks -
|
|
#' choose ones that do something similar to what you want to achieve. Also, you would need to get familiar
|
|
#' with the objects available inside of the \code{xgb.train} and \code{xgb.cv} internal environments.
|
|
#'
|
|
#' @seealso
|
|
#' \code{\link{cb.print.evaluation}},
|
|
#' \code{\link{cb.evaluation.log}},
|
|
#' \code{\link{cb.reset.parameters}},
|
|
#' \code{\link{cb.early.stop}},
|
|
#' \code{\link{cb.save.model}},
|
|
#' \code{\link{cb.cv.predict}},
|
|
#' \code{\link{xgb.train}},
|
|
#' \code{\link{xgb.cv}}
|
|
#'
|
|
#' @name callbacks
|
|
NULL
|
|
|
|
#
|
|
# Callbacks -------------------------------------------------------------------
|
|
#
|
|
|
|
#' Callback closure for printing the result of evaluation
|
|
#'
|
|
#' @param period results would be printed every number of periods
|
|
#' @param showsd whether standard deviations should be printed (when available)
|
|
#'
|
|
#' @details
|
|
#' The callback function prints the result of evaluation at every \code{period} iterations.
|
|
#' The initial and the last iteration's evaluations are always printed.
|
|
#'
|
|
#' Callback function expects the following values to be set in its calling frame:
|
|
#' \code{bst_evaluation} (also \code{bst_evaluation_err} when available),
|
|
#' \code{iteration},
|
|
#' \code{begin_iteration},
|
|
#' \code{end_iteration}.
|
|
#'
|
|
#' @seealso
|
|
#' \code{\link{callbacks}}
|
|
#'
|
|
#' @export
|
|
cb.print.evaluation <- function(period = 1, showsd = TRUE) {
|
|
|
|
callback <- function(env = parent.frame()) {
|
|
if (length(env$bst_evaluation) == 0 ||
|
|
period == 0 ||
|
|
NVL(env$rank, 0) != 0 )
|
|
return()
|
|
|
|
i <- env$iteration
|
|
if ((i-1) %% period == 0 ||
|
|
i == env$begin_iteration ||
|
|
i == env$end_iteration) {
|
|
stdev <- if (showsd) env$bst_evaluation_err else NULL
|
|
msg <- format.eval.string(i, env$bst_evaluation, stdev)
|
|
cat(msg, '\n')
|
|
}
|
|
}
|
|
attr(callback, 'call') <- match.call()
|
|
attr(callback, 'name') <- 'cb.print.evaluation'
|
|
callback
|
|
}
|
|
|
|
|
|
#' Callback closure for logging the evaluation history
|
|
#'
|
|
#' @details
|
|
#' This callback function appends the current iteration evaluation results \code{bst_evaluation}
|
|
#' available in the calling parent frame to the \code{evaluation_log} list in a calling frame.
|
|
#'
|
|
#' The finalizer callback (called with \code{finalize = TURE} in the end) converts
|
|
#' the \code{evaluation_log} list into a final data.table.
|
|
#'
|
|
#' The iteration evaluation result \code{bst_evaluation} must be a named numeric vector.
|
|
#'
|
|
#' Note: in the column names of the final data.table, the dash '-' character is replaced with
|
|
#' the underscore '_' in order to make the column names more like regular R identifiers.
|
|
#'
|
|
#' Callback function expects the following values to be set in its calling frame:
|
|
#' \code{evaluation_log},
|
|
#' \code{bst_evaluation},
|
|
#' \code{iteration}.
|
|
#'
|
|
#' @seealso
|
|
#' \code{\link{callbacks}}
|
|
#'
|
|
#' @export
|
|
cb.evaluation.log <- function() {
|
|
|
|
mnames <- NULL
|
|
|
|
init <- function(env) {
|
|
if (!is.list(env$evaluation_log))
|
|
stop("'evaluation_log' has to be a list")
|
|
mnames <<- names(env$bst_evaluation)
|
|
if (is.null(mnames) || any(mnames == ""))
|
|
stop("bst_evaluation must have non-empty names")
|
|
|
|
mnames <<- gsub('-', '_', names(env$bst_evaluation))
|
|
if(!is.null(env$bst_evaluation_err))
|
|
mnames <<- c(paste0(mnames, '_mean'), paste0(mnames, '_std'))
|
|
}
|
|
|
|
finalizer <- function(env) {
|
|
env$evaluation_log <- as.data.table(t(simplify2array(env$evaluation_log)))
|
|
setnames(env$evaluation_log, c('iter', mnames))
|
|
|
|
if(!is.null(env$bst_evaluation_err)) {
|
|
# rearrange col order from _mean,_mean,...,_std,_std,...
|
|
# to be _mean,_std,_mean,_std,...
|
|
len <- length(mnames)
|
|
means <- mnames[1:(len/2)]
|
|
stds <- mnames[(len/2 + 1):len]
|
|
cnames <- numeric(len)
|
|
cnames[c(TRUE, FALSE)] <- means
|
|
cnames[c(FALSE, TRUE)] <- stds
|
|
env$evaluation_log <- env$evaluation_log[, c('iter', cnames), with = FALSE]
|
|
}
|
|
}
|
|
|
|
callback <- function(env = parent.frame(), finalize = FALSE) {
|
|
if (is.null(mnames))
|
|
init(env)
|
|
|
|
if (finalize)
|
|
return(finalizer(env))
|
|
|
|
ev <- env$bst_evaluation
|
|
if(!is.null(env$bst_evaluation_err))
|
|
ev <- c(ev, env$bst_evaluation_err)
|
|
env$evaluation_log <- c(env$evaluation_log,
|
|
list(c(iter = env$iteration, ev)))
|
|
}
|
|
attr(callback, 'call') <- match.call()
|
|
attr(callback, 'name') <- 'cb.evaluation.log'
|
|
callback
|
|
}
|
|
|
|
#' Callback closure for restetting the booster's parameters at each iteration.
|
|
#'
|
|
#' @param new_params a list where each element corresponds to a parameter that needs to be reset.
|
|
#' Each element's value must be either a vector of values of length \code{nrounds}
|
|
#' to be set at each iteration,
|
|
#' or a function of two parameters \code{learning_rates(iteration, nrounds)}
|
|
#' which returns a new parameter value by using the current iteration number
|
|
#' and the total number of boosting rounds.
|
|
#'
|
|
#' @details
|
|
#' This is a "pre-iteration" callback function used to reset booster's parameters
|
|
#' at the beginning of each iteration.
|
|
#'
|
|
#' Note that when training is resumed from some previous model, and a function is used to
|
|
#' reset a parameter value, the \code{nround} argument in this function would be the
|
|
#' the number of boosting rounds in the current training.
|
|
#'
|
|
#' Callback function expects the following values to be set in its calling frame:
|
|
#' \code{bst} or \code{bst_folds},
|
|
#' \code{iteration},
|
|
#' \code{begin_iteration},
|
|
#' \code{end_iteration}.
|
|
#'
|
|
#' @seealso
|
|
#' \code{\link{callbacks}}
|
|
#'
|
|
#' @export
|
|
cb.reset.parameters <- function(new_params) {
|
|
|
|
if (typeof(new_params) != "list")
|
|
stop("'new_params' must be a list")
|
|
pnames <- gsub("\\.", "_", names(new_params))
|
|
nrounds <- NULL
|
|
|
|
# run some checks in the begining
|
|
init <- function(env) {
|
|
nrounds <<- env$end_iteration - env$begin_iteration + 1
|
|
|
|
if (is.null(env$bst) && is.null(env$bst_folds))
|
|
stop("Parent frame has neither 'bst' nor 'bst_folds'")
|
|
|
|
# Some parameters are not allowed to be changed,
|
|
# since changing them would simply wreck some chaos
|
|
not_allowed <- pnames %in%
|
|
c('num_class', 'num_output_group', 'size_leaf_vector', 'updater_seq')
|
|
if (any(not_allowed))
|
|
stop('Parameters ', paste(pnames[not_allowed]), " cannot be changed during boosting.")
|
|
|
|
for (n in pnames) {
|
|
p <- new_params[[n]]
|
|
if (is.function(p)) {
|
|
if (length(formals(p)) != 2)
|
|
stop("Parameter '", n, "' is a function but not of two arguments")
|
|
} else if (is.numeric(p) || is.character(p)) {
|
|
if (length(p) != nrounds)
|
|
stop("Length of '", n, "' has to be equal to 'nrounds'")
|
|
} else {
|
|
stop("Parameter '", n, "' is not a function or a vector")
|
|
}
|
|
}
|
|
}
|
|
|
|
callback <- function(env = parent.frame()) {
|
|
if (is.null(nrounds))
|
|
init(env)
|
|
|
|
i <- env$iteration
|
|
pars <- lapply(new_params, function(p) {
|
|
if (is.function(p))
|
|
return(p(i, nrounds))
|
|
p[i]
|
|
})
|
|
|
|
if (!is.null(env$bst)) {
|
|
xgb.parameters(env$bst$handle) <- pars
|
|
} else {
|
|
for (fd in env$bst_folds)
|
|
xgb.parameters(fd$bst) <- pars
|
|
}
|
|
}
|
|
attr(callback, 'is_pre_iteration') <- TRUE
|
|
attr(callback, 'call') <- match.call()
|
|
attr(callback, 'name') <- 'cb.reset.parameters'
|
|
callback
|
|
}
|
|
|
|
|
|
#' Callback closure to activate the early stopping.
|
|
#'
|
|
#' @param stopping_rounds The number of rounds with no improvement in
|
|
#' the evaluation metric in order to stop the training.
|
|
#' @param maximize whether to maximize the evaluation metric
|
|
#' @param metric_name the name of an evaluation column to use as a criteria for early
|
|
#' stopping. If not set, the last column would be used.
|
|
#' Let's say the test data in \code{watchlist} was labelled as \code{dtest},
|
|
#' and one wants to use the AUC in test data for early stopping regardless of where
|
|
#' it is in the \code{watchlist}, then one of the following would need to be set:
|
|
#' \code{metric_name='dtest-auc'} or \code{metric_name='dtest_auc'}.
|
|
#' All dash '-' characters in metric names are considered equivalent to '_'.
|
|
#' @param verbose whether to print the early stopping information.
|
|
#'
|
|
#' @details
|
|
#' This callback function determines the condition for early stopping
|
|
#' by setting the \code{stop_condition = TRUE} flag in its calling frame.
|
|
#'
|
|
#' The following additional fields are assigned to the model's R object:
|
|
#' \itemize{
|
|
#' \item \code{best_score} the evaluation score at the best iteration
|
|
#' \item \code{best_iteration} at which boosting iteration the best score has occurred (1-based index)
|
|
#' \item \code{best_ntreelimit} to use with the \code{ntreelimit} parameter in \code{predict}.
|
|
#' It differs from \code{best_iteration} in multiclass or random forest settings.
|
|
#' }
|
|
#'
|
|
#' The Same values are also stored as xgb-attributes:
|
|
#' \itemize{
|
|
#' \item \code{best_iteration} is stored as a 0-based iteration index (for interoperability of binary models)
|
|
#' \item \code{best_msg} message string is also stored.
|
|
#' }
|
|
#'
|
|
#' At least one data element is required in the evaluation watchlist for early stopping to work.
|
|
#'
|
|
#' Callback function expects the following values to be set in its calling frame:
|
|
#' \code{stop_condition},
|
|
#' \code{bst_evaluation},
|
|
#' \code{rank},
|
|
#' \code{bst} (or \code{bst_folds} and \code{basket}),
|
|
#' \code{iteration},
|
|
#' \code{begin_iteration},
|
|
#' \code{end_iteration},
|
|
#' \code{num_parallel_tree}.
|
|
#'
|
|
#' @seealso
|
|
#' \code{\link{callbacks}},
|
|
#' \code{\link{xgb.attr}}
|
|
#'
|
|
#' @export
|
|
cb.early.stop <- function(stopping_rounds, maximize = FALSE,
|
|
metric_name = NULL, verbose = TRUE) {
|
|
# state variables
|
|
best_iteration <- -1
|
|
best_ntreelimit <- -1
|
|
best_score <- Inf
|
|
best_msg <- NULL
|
|
metric_idx <- 1
|
|
|
|
init <- function(env) {
|
|
if (length(env$bst_evaluation) == 0)
|
|
stop("For early stopping, watchlist must have at least one element")
|
|
|
|
eval_names <- gsub('-', '_', names(env$bst_evaluation))
|
|
if (!is.null(metric_name)) {
|
|
metric_idx <<- which(gsub('-', '_', metric_name) == eval_names)
|
|
if (length(metric_idx) == 0)
|
|
stop("'metric_name' for early stopping is not one of the following:\n",
|
|
paste(eval_names, collapse = ' '), '\n')
|
|
}
|
|
if (is.null(metric_name) &&
|
|
length(env$bst_evaluation) > 1) {
|
|
metric_idx <<- length(eval_names)
|
|
if (verbose)
|
|
cat('Multiple eval metrics are present. Will use ',
|
|
eval_names[metric_idx], ' for early stopping.\n', sep = '')
|
|
}
|
|
|
|
metric_name <<- eval_names[metric_idx]
|
|
|
|
# maximixe is usually NULL when not set in xgb.train and built-in metrics
|
|
if (is.null(maximize))
|
|
maximize <<- ifelse(grepl('(_auc|_map|_ndcg)', metric_name), TRUE, FALSE)
|
|
|
|
if (verbose && NVL(env$rank, 0) == 0)
|
|
cat("Will train until ", metric_name, " hasn't improved in ",
|
|
stopping_rounds, " rounds.\n\n", sep = '')
|
|
|
|
best_iteration <<- 1
|
|
if (maximize) best_score <<- -Inf
|
|
|
|
env$stop_condition <- FALSE
|
|
|
|
if (!is.null(env$bst)) {
|
|
if (!inherits(env$bst, 'xgb.Booster'))
|
|
stop("'bst' in the parent frame must be an 'xgb.Booster'")
|
|
if (!is.null(best_score <- xgb.attr(env$bst$handle, 'best_score'))) {
|
|
best_score <<- as.numeric(best_score)
|
|
best_iteration <<- as.numeric(xgb.attr(env$bst$handle, 'best_iteration')) + 1
|
|
best_msg <<- as.numeric(xgb.attr(env$bst$handle, 'best_msg'))
|
|
} else {
|
|
xgb.attributes(env$bst$handle) <- list(best_iteration = best_iteration - 1,
|
|
best_score = best_score)
|
|
}
|
|
} else if (is.null(env$bst_folds) || is.null(env$basket)) {
|
|
stop("Parent frame has neither 'bst' nor ('bst_folds' and 'basket')")
|
|
}
|
|
}
|
|
|
|
finalizer <- function(env) {
|
|
if (!is.null(env$bst)) {
|
|
attr_best_score = as.numeric(xgb.attr(env$bst$handle, 'best_score'))
|
|
if (best_score != attr_best_score)
|
|
stop("Inconsistent 'best_score' values between the closure state: ", best_score,
|
|
" and the xgb.attr: ", attr_best_score)
|
|
env$bst$best_iteration = best_iteration
|
|
env$bst$best_ntreelimit = best_ntreelimit
|
|
env$bst$best_score = best_score
|
|
} else {
|
|
env$basket$best_iteration <- best_iteration
|
|
env$basket$best_ntreelimit <- best_ntreelimit
|
|
}
|
|
}
|
|
|
|
callback <- function(env = parent.frame(), finalize = FALSE) {
|
|
if (best_iteration < 0)
|
|
init(env)
|
|
|
|
if (finalize)
|
|
return(finalizer(env))
|
|
|
|
i <- env$iteration
|
|
score = env$bst_evaluation[metric_idx]
|
|
|
|
if (( maximize && score > best_score) ||
|
|
(!maximize && score < best_score)) {
|
|
|
|
best_msg <<- format.eval.string(i, env$bst_evaluation, env$bst_evaluation_err)
|
|
best_score <<- score
|
|
best_iteration <<- i
|
|
best_ntreelimit <<- best_iteration * env$num_parallel_tree
|
|
# save the property to attributes, so they will occur in checkpoint
|
|
if (!is.null(env$bst)) {
|
|
xgb.attributes(env$bst) <- list(
|
|
best_iteration = best_iteration - 1, # convert to 0-based index
|
|
best_score = best_score,
|
|
best_msg = best_msg,
|
|
best_ntreelimit = best_ntreelimit)
|
|
}
|
|
} else if (i - best_iteration >= stopping_rounds) {
|
|
env$stop_condition <- TRUE
|
|
env$end_iteration <- i
|
|
if (verbose && NVL(env$rank, 0) == 0)
|
|
cat("Stopping. Best iteration:\n", best_msg, "\n\n", sep = '')
|
|
}
|
|
}
|
|
attr(callback, 'call') <- match.call()
|
|
attr(callback, 'name') <- 'cb.early.stop'
|
|
callback
|
|
}
|
|
|
|
|
|
#' Callback closure for saving a model file.
|
|
#'
|
|
#' @param save_period save the model to disk after every
|
|
#' \code{save_period} iterations; 0 means save the model at the end.
|
|
#' @param save_name the name or path for the saved model file.
|
|
#' It can contain a \code{\link[base]{sprintf}} formatting specifier
|
|
#' to include the integer iteration number in the file name.
|
|
#' E.g., with \code{save_name} = 'xgboost_%04d.model',
|
|
#' the file saved at iteration 50 would be named "xgboost_0050.model".
|
|
#'
|
|
#' @details
|
|
#' This callback function allows to save an xgb-model file, either periodically after each \code{save_period}'s or at the end.
|
|
#'
|
|
#' Callback function expects the following values to be set in its calling frame:
|
|
#' \code{bst},
|
|
#' \code{iteration},
|
|
#' \code{begin_iteration},
|
|
#' \code{end_iteration}.
|
|
#'
|
|
#' @seealso
|
|
#' \code{\link{callbacks}}
|
|
#'
|
|
#' @export
|
|
cb.save.model <- function(save_period = 0, save_name = "xgboost.model") {
|
|
|
|
if (save_period < 0)
|
|
stop("'save_period' cannot be negative")
|
|
|
|
callback <- function(env = parent.frame()) {
|
|
if (is.null(env$bst))
|
|
stop("'save_model' callback requires the 'bst' booster object in its calling frame")
|
|
|
|
if ((save_period > 0 && (env$iteration - env$begin_iteration) %% save_period == 0) ||
|
|
(save_period == 0 && env$iteration == env$end_iteration))
|
|
xgb.save(env$bst, sprintf(save_name, env$iteration))
|
|
}
|
|
attr(callback, 'call') <- match.call()
|
|
attr(callback, 'name') <- 'cb.save.model'
|
|
callback
|
|
}
|
|
|
|
|
|
#' Callback closure for returning cross-validation based predictions.
|
|
#'
|
|
#' @param save_models a flag for whether to save the folds' models.
|
|
#'
|
|
#' @details
|
|
#' This callback function saves predictions for all of the test folds,
|
|
#' and also allows to save the folds' models.
|
|
#'
|
|
#' It is a "finalizer" callback and it uses early stopping information whenever it is available,
|
|
#' thus it must be run after the early stopping callback if the early stopping is used.
|
|
#'
|
|
#' Callback function expects the following values to be set in its calling frame:
|
|
#' \code{bst_folds},
|
|
#' \code{basket},
|
|
#' \code{data},
|
|
#' \code{end_iteration},
|
|
#' \code{params},
|
|
#' \code{num_parallel_tree},
|
|
#' \code{num_class}.
|
|
#'
|
|
#' @return
|
|
#' Predictions are returned inside of the \code{pred} element, which is either a vector or a matrix,
|
|
#' depending on the number of prediction outputs per data row. The order of predictions corresponds
|
|
#' to the order of rows in the original dataset. Note that when a custom \code{folds} list is
|
|
#' provided in \code{xgb.cv}, the predictions would only be returned properly when this list is a
|
|
#' non-overlapping list of k sets of indices, as in a standard k-fold CV. The predictions would not be
|
|
#' meaningful when user-profided folds have overlapping indices as in, e.g., random sampling splits.
|
|
#' When some of the indices in the training dataset are not included into user-provided \code{folds},
|
|
#' their prediction value would be \code{NA}.
|
|
#'
|
|
#' @seealso
|
|
#' \code{\link{callbacks}}
|
|
#'
|
|
#' @export
|
|
cb.cv.predict <- function(save_models = FALSE) {
|
|
|
|
finalizer <- function(env) {
|
|
if (is.null(env$basket) || is.null(env$bst_folds))
|
|
stop("'cb.cv.predict' callback requires 'basket' and 'bst_folds' lists in its calling frame")
|
|
|
|
N <- nrow(env$data)
|
|
pred <-
|
|
if (env$num_class > 1) {
|
|
matrix(NA_real_, N, env$num_class)
|
|
} else {
|
|
rep(NA_real_, N)
|
|
}
|
|
|
|
ntreelimit <- NVL(env$basket$best_ntreelimit,
|
|
env$end_iteration * env$num_parallel_tree)
|
|
if (NVL(env$params[['booster']], '') == 'gblinear') {
|
|
ntreelimit <- 0 # must be 0 for gblinear
|
|
}
|
|
for (fd in env$bst_folds) {
|
|
pr <- predict(fd$bst, fd$watchlist[[2]], ntreelimit = ntreelimit, reshape = TRUE)
|
|
if (is.matrix(pred)) {
|
|
pred[fd$index,] <- pr
|
|
} else {
|
|
pred[fd$index] <- pr
|
|
}
|
|
}
|
|
env$basket$pred <- pred
|
|
if (save_models) {
|
|
env$basket$models <- lapply(env$bst_folds, function(fd) {
|
|
xgb.attr(fd$bst, 'niter') <- env$end_iteration - 1
|
|
xgb.Booster.complete(xgb.handleToBooster(fd$bst), saveraw = TRUE)
|
|
})
|
|
}
|
|
}
|
|
|
|
callback <- function(env = parent.frame(), finalize = FALSE) {
|
|
if (finalize)
|
|
return(finalizer(env))
|
|
}
|
|
attr(callback, 'call') <- match.call()
|
|
attr(callback, 'name') <- 'cb.cv.predict'
|
|
callback
|
|
}
|
|
|
|
|
|
#
|
|
# Internal utility functions for callbacks ------------------------------------
|
|
#
|
|
|
|
# Format the evaluation metric string
|
|
format.eval.string <- function(iter, eval_res, eval_err = NULL) {
|
|
if (length(eval_res) == 0)
|
|
stop('no evaluation results')
|
|
enames <- names(eval_res)
|
|
if (is.null(enames))
|
|
stop('evaluation results must have names')
|
|
iter <- sprintf('[%d]\t', iter)
|
|
if (!is.null(eval_err)) {
|
|
if (length(eval_res) != length(eval_err))
|
|
stop('eval_res & eval_err lengths mismatch')
|
|
res <- paste0(sprintf("%s:%f+%f", enames, eval_res, eval_err), collapse = '\t')
|
|
} else {
|
|
res <- paste0(sprintf("%s:%f", enames, eval_res), collapse = '\t')
|
|
}
|
|
return(paste0(iter, res))
|
|
}
|
|
|
|
# Extract callback names from the list of callbacks
|
|
callback.names <- function(cb_list) {
|
|
unlist(lapply(cb_list, function(x) attr(x, 'name')))
|
|
}
|
|
|
|
# Extract callback calls from the list of callbacks
|
|
callback.calls <- function(cb_list) {
|
|
unlist(lapply(cb_list, function(x) attr(x, 'call')))
|
|
}
|
|
|
|
# Add a callback cb to the list and make sure that
|
|
# cb.early.stop and cb.cv.predict are at the end of the list
|
|
# with cb.cv.predict being the last (when present)
|
|
add.cb <- function(cb_list, cb) {
|
|
cb_list <- c(cb_list, cb)
|
|
names(cb_list) <- callback.names(cb_list)
|
|
if ('cb.early.stop' %in% names(cb_list)) {
|
|
cb_list <- c(cb_list, cb_list['cb.early.stop'])
|
|
# this removes only the first one
|
|
cb_list['cb.early.stop'] <- NULL
|
|
}
|
|
if ('cb.cv.predict' %in% names(cb_list)) {
|
|
cb_list <- c(cb_list, cb_list['cb.cv.predict'])
|
|
cb_list['cb.cv.predict'] <- NULL
|
|
}
|
|
cb_list
|
|
}
|
|
|
|
# Sort callbacks list into categories
|
|
categorize.callbacks <- function(cb_list) {
|
|
list(
|
|
pre_iter = Filter(function(x) {
|
|
pre <- attr(x, 'is_pre_iteration')
|
|
!is.null(pre) && pre
|
|
}, cb_list),
|
|
post_iter = Filter(function(x) {
|
|
pre <- attr(x, 'is_pre_iteration')
|
|
is.null(pre) || !pre
|
|
}, cb_list),
|
|
finalize = Filter(function(x) {
|
|
'finalize' %in% names(formals(x))
|
|
}, cb_list)
|
|
)
|
|
}
|
|
|
|
# Check whether all callback functions with names given by 'query_names' are present in the 'cb_list'.
|
|
has.callbacks <- function(cb_list, query_names) {
|
|
if (length(cb_list) < length(query_names))
|
|
return(FALSE)
|
|
if (!is.list(cb_list) ||
|
|
any(sapply(cb_list, class) != 'function')) {
|
|
stop('`cb_list`` must be a list of callback functions')
|
|
}
|
|
cb_names <- callback.names(cb_list)
|
|
if (!is.character(cb_names) ||
|
|
length(cb_names) != length(cb_list) ||
|
|
any(cb_names == "")) {
|
|
stop('All callbacks in the `cb_list` must have a non-empty `name` attribute')
|
|
}
|
|
if (!is.character(query_names) ||
|
|
length(query_names) == 0 ||
|
|
any(query_names == "")) {
|
|
stop('query_names must be a non-empty vector of non-empty character names')
|
|
}
|
|
return(all(query_names %in% cb_names))
|
|
}
|