292 lines
9.7 KiB
C++
292 lines
9.7 KiB
C++
/*!
|
|
* Copyright 2016-2019 XGBoost contributors
|
|
*/
|
|
#ifndef XGBOOST_TESTS_CPP_HELPERS_H_
|
|
#define XGBOOST_TESTS_CPP_HELPERS_H_
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <dmlc/filesystem.h>
|
|
#include <xgboost/base.h>
|
|
#include <xgboost/json.h>
|
|
#include <xgboost/generic_parameters.h>
|
|
#include <xgboost/c_api.h>
|
|
|
|
#include "../../src/common/common.h"
|
|
#include "../../src/gbm/gbtree_model.h"
|
|
#if defined(__CUDACC__)
|
|
#include "../../src/data/ellpack_page.cuh"
|
|
#endif
|
|
|
|
#if defined(__CUDACC__)
|
|
#define DeclareUnifiedTest(name) GPU ## name
|
|
#else
|
|
#define DeclareUnifiedTest(name) name
|
|
#endif
|
|
|
|
#if defined(__CUDACC__)
|
|
#define GPUIDX 0
|
|
#else
|
|
#define GPUIDX -1
|
|
#endif
|
|
|
|
namespace xgboost {
|
|
class ObjFunction;
|
|
class Metric;
|
|
struct LearnerModelParam;
|
|
}
|
|
|
|
bool FileExists(const std::string& filename);
|
|
|
|
int64_t GetFileSize(const std::string& filename);
|
|
|
|
void CreateSimpleTestData(const std::string& filename);
|
|
|
|
void CreateBigTestData(const std::string& filename, size_t n_entries);
|
|
|
|
void CheckObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess);
|
|
|
|
xgboost::Json CheckConfigReloadImpl(xgboost::Configurable* const configurable,
|
|
std::string name);
|
|
|
|
template <typename T>
|
|
xgboost::Json CheckConfigReload(std::unique_ptr<T> const& configurable,
|
|
std::string name = "") {
|
|
return CheckConfigReloadImpl(dynamic_cast<xgboost::Configurable*>(configurable.get()),
|
|
name);
|
|
}
|
|
|
|
void CheckRankingObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_uint> groups,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess);
|
|
|
|
xgboost::bst_float GetMetricEval(
|
|
xgboost::Metric * metric,
|
|
xgboost::HostDeviceVector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights = std::vector<xgboost::bst_float>(),
|
|
std::vector<xgboost::bst_uint> groups = std::vector<xgboost::bst_uint>());
|
|
|
|
namespace xgboost {
|
|
bool IsNear(std::vector<xgboost::bst_float>::const_iterator _beg1,
|
|
std::vector<xgboost::bst_float>::const_iterator _end1,
|
|
std::vector<xgboost::bst_float>::const_iterator _beg2);
|
|
|
|
/*!
|
|
* \brief Linear congruential generator.
|
|
*
|
|
* The distribution defined in std is not portable. Given the same seed, it
|
|
* migth produce different outputs on different platforms or with different
|
|
* compilers. The SimpleLCG implemented here is to make sure all tests are
|
|
* reproducible.
|
|
*/
|
|
class SimpleLCG {
|
|
private:
|
|
using StateType = int64_t;
|
|
static StateType constexpr default_init_ = 3;
|
|
static StateType constexpr default_alpha_ = 61;
|
|
static StateType constexpr max_value_ = ((StateType)1 << 32) - 1;
|
|
|
|
StateType state_;
|
|
StateType const alpha_;
|
|
StateType const mod_;
|
|
|
|
StateType const seed_;
|
|
|
|
public:
|
|
SimpleLCG() : state_{default_init_},
|
|
alpha_{default_alpha_}, mod_{max_value_}, seed_{state_}{}
|
|
/*!
|
|
* \brief Initialize SimpleLCG.
|
|
*
|
|
* \param state Initial state, can also be considered as seed. If set to
|
|
* zero, SimpleLCG will use internal default value.
|
|
* \param alpha multiplier
|
|
* \param mod modulo
|
|
*/
|
|
SimpleLCG(StateType state,
|
|
StateType alpha=default_alpha_, StateType mod=max_value_)
|
|
: state_{state == 0 ? default_init_ : state},
|
|
alpha_{alpha}, mod_{mod} , seed_{state} {}
|
|
|
|
StateType operator()();
|
|
StateType Min() const;
|
|
StateType Max() const;
|
|
};
|
|
|
|
template <typename ResultT>
|
|
class SimpleRealUniformDistribution {
|
|
private:
|
|
ResultT const lower;
|
|
ResultT const upper;
|
|
|
|
/*! \brief Over-simplified version of std::generate_canonical. */
|
|
template <size_t Bits, typename GeneratorT>
|
|
ResultT GenerateCanonical(GeneratorT* rng) const {
|
|
static_assert(std::is_floating_point<ResultT>::value,
|
|
"Result type must be floating point.");
|
|
long double const r = (static_cast<long double>(rng->Max())
|
|
- static_cast<long double>(rng->Min())) + 1.0L;
|
|
size_t const log2r = std::log(r) / std::log(2.0L);
|
|
size_t m = std::max<size_t>(1UL, (Bits + log2r - 1UL) / log2r);
|
|
ResultT sum_value = 0, r_k = 1;
|
|
|
|
for (size_t k = m; k != 0; --k) {
|
|
sum_value += ResultT((*rng)() - rng->Min()) * r_k;
|
|
r_k *= r;
|
|
}
|
|
|
|
ResultT res = sum_value / r_k;
|
|
return res;
|
|
}
|
|
|
|
public:
|
|
SimpleRealUniformDistribution(ResultT l, ResultT u) :
|
|
lower{l}, upper{u} {}
|
|
|
|
template <typename GeneratorT>
|
|
ResultT operator()(GeneratorT* rng) const {
|
|
ResultT tmp = GenerateCanonical<std::numeric_limits<ResultT>::digits,
|
|
GeneratorT>(rng);
|
|
return (tmp * (upper - lower)) + lower;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* \fn std::shared_ptr<xgboost::DMatrix> CreateDMatrix(int rows, int columns, float sparsity, int seed);
|
|
*
|
|
* \brief Creates dmatrix with uniform random data between 0-1.
|
|
*
|
|
* \param rows The rows.
|
|
* \param columns The columns.
|
|
* \param sparsity The sparsity.
|
|
* \param seed The seed.
|
|
*
|
|
* \return The new d matrix.
|
|
*/
|
|
std::shared_ptr<xgboost::DMatrix> *CreateDMatrix(int rows, int columns,
|
|
float sparsity, int seed = 0);
|
|
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(
|
|
size_t n_entries, size_t page_size, std::string tmp_file);
|
|
|
|
/**
|
|
* \fn std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(size_t n_rows, size_t n_cols,
|
|
* size_t page_size);
|
|
*
|
|
* \brief Creates dmatrix with some records, each record containing random number of
|
|
* features in [1, n_cols]
|
|
*
|
|
* \param n_rows Number of records to create.
|
|
* \param n_cols Max number of features within that record.
|
|
* \param page_size Sparse page size for the pages within the dmatrix. If page size is 0
|
|
* then the entire dmatrix is resident in memory; else, multiple sparse pages
|
|
* of page size are created and backed to disk, which would have to be
|
|
* streamed in at point of use.
|
|
* \param deterministic The content inside the dmatrix is constant for this configuration, if true;
|
|
* else, the content changes every time this method is invoked
|
|
*
|
|
* \return The new dmatrix.
|
|
*/
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(
|
|
size_t n_rows, size_t n_cols, size_t page_size, bool deterministic,
|
|
const dmlc::TemporaryDirectory& tempdir = dmlc::TemporaryDirectory());
|
|
|
|
gbm::GBTreeModel CreateTestModel(LearnerModelParam const* param, size_t n_classes = 1);
|
|
|
|
std::unique_ptr<GradientBooster> CreateTrainedGBM(
|
|
std::string name, Args kwargs, size_t kRows, size_t kCols,
|
|
LearnerModelParam const* learner_model_param,
|
|
GenericParameter const* generic_param);
|
|
|
|
inline GenericParameter CreateEmptyGenericParam(int gpu_id) {
|
|
xgboost::GenericParameter tparam;
|
|
std::vector<std::pair<std::string, std::string>> args {
|
|
{"gpu_id", std::to_string(gpu_id)}};
|
|
tparam.Init(args);
|
|
return tparam;
|
|
}
|
|
|
|
inline HostDeviceVector<GradientPair> GenerateRandomGradients(const size_t n_rows,
|
|
float lower= 0.0f, float upper = 1.0f) {
|
|
xgboost::SimpleLCG gen;
|
|
xgboost::SimpleRealUniformDistribution<bst_float> dist(lower, upper);
|
|
std::vector<GradientPair> h_gpair(n_rows);
|
|
for (auto &gpair : h_gpair) {
|
|
bst_float grad = dist(&gen);
|
|
bst_float hess = dist(&gen);
|
|
gpair = GradientPair(grad, hess);
|
|
}
|
|
HostDeviceVector<GradientPair> gpair(h_gpair);
|
|
return gpair;
|
|
}
|
|
|
|
#if defined(__CUDACC__)
|
|
namespace {
|
|
class HistogramCutsWrapper : public common::HistogramCuts {
|
|
public:
|
|
using SuperT = common::HistogramCuts;
|
|
void SetValues(std::vector<float> cuts) {
|
|
SuperT::cut_values_.HostVector() = std::move(cuts);
|
|
}
|
|
void SetPtrs(std::vector<uint32_t> ptrs) {
|
|
SuperT::cut_ptrs_.HostVector() = std::move(ptrs);
|
|
}
|
|
void SetMins(std::vector<float> mins) {
|
|
SuperT::min_vals_.HostVector() = std::move(mins);
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
inline std::unique_ptr<EllpackPageImpl> BuildEllpackPage(
|
|
int n_rows, int n_cols, bst_float sparsity= 0) {
|
|
auto dmat = CreateDMatrix(n_rows, n_cols, sparsity, 3);
|
|
const SparsePage& batch = *(*dmat)->GetBatches<xgboost::SparsePage>().begin();
|
|
|
|
HistogramCutsWrapper cmat;
|
|
cmat.SetPtrs({0, 3, 6, 9, 12, 15, 18, 21, 24});
|
|
// 24 cut fields, 3 cut fields for each feature (column).
|
|
cmat.SetValues({0.30f, 0.67f, 1.64f,
|
|
0.32f, 0.77f, 1.95f,
|
|
0.29f, 0.70f, 1.80f,
|
|
0.32f, 0.75f, 1.85f,
|
|
0.18f, 0.59f, 1.69f,
|
|
0.25f, 0.74f, 2.00f,
|
|
0.26f, 0.74f, 1.98f,
|
|
0.26f, 0.71f, 1.83f});
|
|
cmat.SetMins({0.1f, 0.2f, 0.3f, 0.1f, 0.2f, 0.3f, 0.2f, 0.2f});
|
|
|
|
bst_row_t row_stride = 0;
|
|
const auto &offset_vec = batch.offset.ConstHostVector();
|
|
for (size_t i = 1; i < offset_vec.size(); ++i) {
|
|
row_stride = std::max(row_stride, offset_vec[i] - offset_vec[i-1]);
|
|
}
|
|
|
|
auto page = std::unique_ptr<EllpackPageImpl>(
|
|
new EllpackPageImpl(0, cmat, batch, (*dmat)->IsDense(), row_stride));
|
|
|
|
delete dmat;
|
|
|
|
return page;
|
|
}
|
|
#endif
|
|
} // namespace xgboost
|
|
#endif
|