xgboost/src/learner.cc
2019-05-30 15:05:09 +08:00

770 lines
27 KiB
C++

/*!
* Copyright 2014-2019 by Contributors
* \file learner.cc
* \brief Implementation of learning algorithm.
* \author Tianqi Chen
*/
#include <dmlc/io.h>
#include <dmlc/timer.h>
#include <xgboost/learner.h>
#include <xgboost/logging.h>
#include <xgboost/generic_parameters.h>
#include <algorithm>
#include <iomanip>
#include <limits>
#include <sstream>
#include <string>
#include <ios>
#include <utility>
#include <vector>
#include "./common/common.h"
#include "./common/host_device_vector.h"
#include "./common/io.h"
#include "./common/random.h"
#include "./common/timer.h"
namespace {
const char* kMaxDeltaStepDefaultValue = "0.7";
inline bool IsFloat(const std::string& str) {
std::stringstream ss(str);
float f;
return !((ss >> std::noskipws >> f).rdstate() ^ std::ios_base::eofbit);
}
inline bool IsInt(const std::string& str) {
std::stringstream ss(str);
int i;
return !((ss >> std::noskipws >> i).rdstate() ^ std::ios_base::eofbit);
}
inline std::string RenderParamVal(const std::string& str) {
if (IsFloat(str) || IsInt(str)) {
return str;
} else {
return std::string("'") + str + "'";
}
}
} // anonymous namespace
namespace xgboost {
// implementation of base learner.
bool Learner::AllowLazyCheckPoint() const {
return gbm_->AllowLazyCheckPoint();
}
std::vector<std::string> Learner::DumpModel(const FeatureMap& fmap,
bool with_stats,
std::string format) const {
return gbm_->DumpModel(fmap, with_stats, format);
}
/*! \brief training parameter for regression */
struct LearnerModelParam : public dmlc::Parameter<LearnerModelParam> {
/* \brief global bias */
bst_float base_score;
/* \brief number of features */
unsigned num_feature;
/* \brief number of classes, if it is multi-class classification */
int num_class;
/*! \brief Model contain additional properties */
int contain_extra_attrs;
/*! \brief Model contain eval metrics */
int contain_eval_metrics;
/*! \brief reserved field */
int reserved[29];
/*! \brief constructor */
LearnerModelParam() {
std::memset(this, 0, sizeof(LearnerModelParam));
base_score = 0.5f;
}
// declare parameters
DMLC_DECLARE_PARAMETER(LearnerModelParam) {
DMLC_DECLARE_FIELD(base_score)
.set_default(0.5f)
.describe("Global bias of the model.");
DMLC_DECLARE_FIELD(num_feature)
.set_default(0)
.describe(
"Number of features in training data,"
" this parameter will be automatically detected by learner.");
DMLC_DECLARE_FIELD(num_class).set_default(0).set_lower_bound(0).describe(
"Number of class option for multi-class classifier. "
" By default equals 0 and corresponds to binary classifier.");
}
};
DMLC_REGISTER_PARAMETER(LearnerModelParam);
DMLC_REGISTER_PARAMETER(LearnerTrainParam);
/*!
* \brief learner that performs gradient boosting for a specific objective
* function. It does training and prediction.
*/
class LearnerImpl : public Learner {
public:
explicit LearnerImpl(std::vector<std::shared_ptr<DMatrix> > cache)
: cache_(std::move(cache)) {
// boosted tree
name_obj_ = "reg:squarederror";
name_gbm_ = "gbtree";
}
static void AssertGPUSupport() {
#ifndef XGBOOST_USE_CUDA
LOG(FATAL) << "XGBoost version not compiled with GPU support.";
#endif // XGBOOST_USE_CUDA
}
/*! \brief Map `tree_method` parameter to `updater` parameter */
void ConfigureUpdaters() {
// This method is not applicable to non-tree learners
if (cfg_.find("booster") != cfg_.cend() &&
(cfg_.at("booster") != "gbtree" && cfg_.at("booster") != "dart")) {
return;
}
// `updater` parameter was manually specified
if (cfg_.count("updater") > 0) {
LOG(WARNING) << "DANGER AHEAD: You have manually specified `updater` "
"parameter. The `tree_method` parameter will be ignored. "
"Incorrect sequence of updaters will produce undefined "
"behavior. For common uses, we recommend using "
"`tree_method` parameter instead.";
return;
}
/* Choose updaters according to tree_method parameters */
switch (tparam_.tree_method) {
case TreeMethod::kAuto:
// Use heuristic to choose between 'exact' and 'approx'
// This choice is deferred to PerformTreeMethodHeuristic().
break;
case TreeMethod::kApprox:
cfg_["updater"] = "grow_histmaker,prune";
break;
case TreeMethod::kExact:
cfg_["updater"] = "grow_colmaker,prune";
break;
case TreeMethod::kHist:
LOG(INFO) <<
"Tree method is selected to be 'hist', which uses a "
"single updater grow_quantile_histmaker.";
cfg_["updater"] = "grow_quantile_histmaker";
break;
case TreeMethod::kGPUExact:
this->AssertGPUSupport();
cfg_["updater"] = "grow_gpu,prune";
if (cfg_.count("predictor") == 0) {
cfg_["predictor"] = "gpu_predictor";
}
break;
case TreeMethod::kGPUHist:
this->AssertGPUSupport();
cfg_["updater"] = "grow_gpu_hist";
if (cfg_.count("predictor") == 0) {
cfg_["predictor"] = "gpu_predictor";
}
break;
default:
LOG(FATAL) << "Unknown tree_method ("
<< static_cast<int>(tparam_.tree_method) << ") detected";
}
}
void ConfigureObjective() {
if (cfg_.count("num_class") != 0) {
cfg_["num_output_group"] = cfg_["num_class"];
if (atoi(cfg_["num_class"].c_str()) > 1 && cfg_.count("objective") == 0) {
cfg_["objective"] = "multi:softmax";
}
}
if (cfg_.find("max_delta_step") == cfg_.cend() &&
cfg_.find("objective") != cfg_.cend() &&
cfg_["objective"] == "count:poisson") {
cfg_["max_delta_step"] = kMaxDeltaStepDefaultValue;
}
if (cfg_.count("objective") == 0) {
cfg_["objective"] = "reg:squarederror";
}
if (cfg_.count("booster") == 0) {
cfg_["booster"] = "gbtree";
}
}
// Configuration before data is known.
void Configure(
const std::vector<std::pair<std::string, std::string> >& args) override {
// add to configurations
tparam_.InitAllowUnknown(args);
ConsoleLogger::Configure(args.cbegin(), args.cend());
monitor_.Init("Learner");
cfg_.clear();
for (const auto& kv : args) {
if (kv.first == "eval_metric") {
// check duplication
auto dup_check = [&kv](const std::unique_ptr<Metric>& m) {
return m->Name() != kv.second;
};
if (std::all_of(metrics_.begin(), metrics_.end(), dup_check)) {
metrics_.emplace_back(Metric::Create(kv.second, &tparam_));
mparam_.contain_eval_metrics = 1;
}
} else {
cfg_[kv.first] = kv.second;
}
}
if (tparam_.nthread != 0) {
omp_set_num_threads(tparam_.nthread);
}
// add additional parameters
// These are cosntraints that need to be satisfied.
if (tparam_.dsplit == DataSplitMode::kAuto && rabit::IsDistributed()) {
tparam_.dsplit = DataSplitMode::kRow;
}
ConfigureObjective();
ConfigureUpdaters();
// FIXME(trivialfis): So which one should go first? Init or Configure?
if (!this->ModelInitialized()) {
mparam_.InitAllowUnknown(args);
name_obj_ = cfg_["objective"];
name_gbm_ = cfg_["booster"];
// set seed only before the model is initialized
common::GlobalRandom().seed(tparam_.seed);
}
// set number of features correctly.
cfg_["num_feature"] = common::ToString(mparam_.num_feature);
cfg_["num_class"] = common::ToString(mparam_.num_class);
if (gbm_ != nullptr) {
gbm_->Configure(cfg_.begin(), cfg_.end());
}
if (obj_ != nullptr) {
obj_->Configure(cfg_.begin(), cfg_.end());
}
for (auto& p_metric : metrics_) {
p_metric->Configure(cfg_.begin(), cfg_.end());
}
}
void InitModel() override { this->LazyInitModel(); }
// Configuration can only be done after data is known
void ConfigurationWithKnownData(DMatrix* dmat) {
CHECK(ModelInitialized())
<< "Always call InitModel or Load before any evaluation.";
this->ValidateDMatrix(dmat);
// Configure GPU parameters
// FIXME(trivialfis): How do we know dependent parameters are all set?
if (tparam_.tree_method == TreeMethod::kGPUHist ||
tparam_.tree_method == TreeMethod::kGPUExact ||
(cfg_.find("updater") != cfg_.cend() && cfg_.at("updater") == "gpu_coord_descent") ||
(cfg_.find("predictor") != cfg_.cend() &&
cfg_.at("predictor") == "gpu_predictor")) {
if (cfg_.find("n_gpus") == cfg_.cend()) {
tparam_.n_gpus = 1;
}
}
}
void Load(dmlc::Stream* fi) override {
tparam_ = LearnerTrainParam();
tparam_.Init(std::vector<std::pair<std::string, std::string>>{});
// TODO(tqchen) mark deprecation of old format.
common::PeekableInStream fp(fi);
// backward compatible header check.
std::string header;
header.resize(4);
if (fp.PeekRead(&header[0], 4) == 4) {
CHECK_NE(header, "bs64")
<< "Base64 format is no longer supported in brick.";
if (header == "binf") {
CHECK_EQ(fp.Read(&header[0], 4), 4U);
}
}
// use the peekable reader.
fi = &fp;
// read parameter
CHECK_EQ(fi->Read(&mparam_, sizeof(mparam_)), sizeof(mparam_))
<< "BoostLearner: wrong model format";
{
// backward compatibility code for compatible with old model type
// for new model, Read(&name_obj_) is suffice
uint64_t len;
CHECK_EQ(fi->Read(&len, sizeof(len)), sizeof(len));
if (len >= std::numeric_limits<unsigned>::max()) {
int gap;
CHECK_EQ(fi->Read(&gap, sizeof(gap)), sizeof(gap))
<< "BoostLearner: wrong model format";
len = len >> static_cast<uint64_t>(32UL);
}
if (len != 0) {
name_obj_.resize(len);
CHECK_EQ(fi->Read(&name_obj_[0], len), len)
<< "BoostLearner: wrong model format";
}
}
CHECK(fi->Read(&name_gbm_)) << "BoostLearner: wrong model format";
// duplicated code with LazyInitModel
obj_.reset(ObjFunction::Create(name_obj_, &tparam_));
gbm_.reset(GradientBooster::Create(name_gbm_, &tparam_,
cache_, mparam_.base_score));
gbm_->Load(fi);
if (mparam_.contain_extra_attrs != 0) {
std::vector<std::pair<std::string, std::string> > attr;
fi->Read(&attr);
for (auto& kv : attr) {
// Load `predictor`, `n_gpus`, `gpu_id` parameters from extra attributes
const std::string prefix = "SAVED_PARAM_";
if (kv.first.find(prefix) == 0) {
const std::string saved_param = kv.first.substr(prefix.length());
bool is_gpu_predictor = saved_param == "predictor" && kv.second == "gpu_predictor";
#ifdef XGBOOST_USE_CUDA
if (saved_param == "predictor" || saved_param == "n_gpus"
|| saved_param == "gpu_id") {
cfg_[saved_param] = kv.second;
LOG(INFO)
<< "Parameter '" << saved_param << "' has been recovered from "
<< "the saved model. It will be set to "
<< RenderParamVal(kv.second) << " for prediction. To "
<< "override the predictor behavior, explicitly set '"
<< saved_param << "' parameter as follows:\n"
<< " * Python package: bst.set_param('"
<< saved_param << "', [new value])\n"
<< " * R package: xgb.parameters(bst) <- list("
<< saved_param << " = [new value])\n"
<< " * JVM packages: bst.setParam(\""
<< saved_param << "\", [new value])";
}
#else
if (is_gpu_predictor) {
cfg_["predictor"] = "cpu_predictor";
kv.second = "cpu_predictor";
}
#endif // XGBOOST_USE_CUDA
// NO visiable GPU on current environment
if (is_gpu_predictor && GPUSet::AllVisible().Size() == 0) {
cfg_["predictor"] = "cpu_predictor";
kv.second = "cpu_predictor";
}
}
}
attributes_ =
std::map<std::string, std::string>(attr.begin(), attr.end());
}
if (name_obj_ == "count:poisson") {
std::string max_delta_step;
fi->Read(&max_delta_step);
cfg_["max_delta_step"] = max_delta_step;
}
if (mparam_.contain_eval_metrics != 0) {
std::vector<std::string> metr;
fi->Read(&metr);
for (auto name : metr) {
metrics_.emplace_back(
Metric::Create(name, &tparam_));
}
}
cfg_["num_class"] = common::ToString(mparam_.num_class);
cfg_["num_feature"] = common::ToString(mparam_.num_feature);
obj_->Configure(cfg_.begin(), cfg_.end());
for (auto& p_metric : metrics_) {
p_metric->Configure(cfg_.begin(), cfg_.end());
}
}
// rabit save model to rabit checkpoint
void Save(dmlc::Stream* fo) const override {
LearnerModelParam mparam = mparam_; // make a copy to potentially modify
std::vector<std::pair<std::string, std::string> > extra_attr;
// extra attributed to be added just before saving
if (name_obj_ == "count:poisson") {
auto it = cfg_.find("max_delta_step");
if (it != cfg_.end()) {
// write `max_delta_step` parameter as extra attribute of booster
mparam.contain_extra_attrs = 1;
extra_attr.emplace_back("count_poisson_max_delta_step", it->second);
}
}
{
// Write `predictor`, `n_gpus`, `gpu_id` parameters as extra attributes
for (const auto& key : std::vector<std::string>{
"predictor", "n_gpus", "gpu_id"}) {
auto it = cfg_.find(key);
if (it != cfg_.end()) {
mparam.contain_extra_attrs = 1;
extra_attr.emplace_back("SAVED_PARAM_" + key, it->second);
}
}
}
fo->Write(&mparam, sizeof(LearnerModelParam));
fo->Write(name_obj_);
fo->Write(name_gbm_);
gbm_->Save(fo);
if (mparam.contain_extra_attrs != 0) {
std::map<std::string, std::string> attr(attributes_);
for (const auto& kv : extra_attr) {
attr[kv.first] = kv.second;
}
fo->Write(std::vector<std::pair<std::string, std::string>>(
attr.begin(), attr.end()));
}
if (name_obj_ == "count:poisson") {
auto it = cfg_.find("max_delta_step");
if (it != cfg_.end()) {
fo->Write(it->second);
} else {
// recover value of max_delta_step from extra attributes
auto it2 = attributes_.find("count_poisson_max_delta_step");
const std::string max_delta_step
= (it2 != attributes_.end()) ? it2->second : kMaxDeltaStepDefaultValue;
fo->Write(max_delta_step);
}
}
if (mparam.contain_eval_metrics != 0) {
std::vector<std::string> metr;
for (auto& ev : metrics_) {
metr.emplace_back(ev->Name());
}
fo->Write(metr);
}
}
void UpdateOneIter(int iter, DMatrix* train) override {
monitor_.Start("UpdateOneIter");
if (tparam_.seed_per_iteration || rabit::IsDistributed()) {
common::GlobalRandom().seed(tparam_.seed * kRandSeedMagic + iter);
}
this->PerformTreeMethodHeuristic(train);
this->ConfigurationWithKnownData(train);
monitor_.Start("PredictRaw");
this->PredictRaw(train, &preds_[train]);
monitor_.Stop("PredictRaw");
monitor_.Start("GetGradient");
obj_->GetGradient(preds_[train], train->Info(), iter, &gpair_);
monitor_.Stop("GetGradient");
gbm_->DoBoost(train, &gpair_, obj_.get());
monitor_.Stop("UpdateOneIter");
}
void BoostOneIter(int iter, DMatrix* train,
HostDeviceVector<GradientPair>* in_gpair) override {
monitor_.Start("BoostOneIter");
if (tparam_.seed_per_iteration || rabit::IsDistributed()) {
common::GlobalRandom().seed(tparam_.seed * kRandSeedMagic + iter);
}
this->PerformTreeMethodHeuristic(train);
this->ConfigurationWithKnownData(train);
gbm_->DoBoost(train, in_gpair);
monitor_.Stop("BoostOneIter");
}
std::string EvalOneIter(int iter, const std::vector<DMatrix*>& data_sets,
const std::vector<std::string>& data_names) override {
monitor_.Start("EvalOneIter");
std::ostringstream os;
os << '[' << iter << ']' << std::setiosflags(std::ios::fixed);
if (metrics_.size() == 0 && tparam_.disable_default_eval_metric <= 0) {
metrics_.emplace_back(Metric::Create(obj_->DefaultEvalMetric(), &tparam_));
metrics_.back()->Configure(cfg_.begin(), cfg_.end());
}
for (size_t i = 0; i < data_sets.size(); ++i) {
DMatrix * dmat = data_sets[i];
this->ConfigurationWithKnownData(dmat);
this->PredictRaw(data_sets[i], &preds_[dmat]);
obj_->EvalTransform(&preds_[dmat]);
for (auto& ev : metrics_) {
os << '\t' << data_names[i] << '-' << ev->Name() << ':'
<< ev->Eval(preds_[dmat], data_sets[i]->Info(),
tparam_.dsplit == DataSplitMode::kRow);
}
}
monitor_.Stop("EvalOneIter");
return os.str();
}
void SetAttr(const std::string& key, const std::string& value) override {
attributes_[key] = value;
mparam_.contain_extra_attrs = 1;
}
bool GetAttr(const std::string& key, std::string* out) const override {
auto it = attributes_.find(key);
if (it == attributes_.end()) return false;
*out = it->second;
return true;
}
bool DelAttr(const std::string& key) override {
auto it = attributes_.find(key);
if (it == attributes_.end()) return false;
attributes_.erase(it);
return true;
}
std::vector<std::string> GetAttrNames() const override {
std::vector<std::string> out;
out.reserve(attributes_.size());
for (auto& p : attributes_) {
out.push_back(p.first);
}
return out;
}
LearnerTrainParam const& GetLearnerTrainParameter() const override {
return tparam_;
}
std::pair<std::string, bst_float> Evaluate(DMatrix* data,
std::string metric) {
if (metric == "auto") metric = obj_->DefaultEvalMetric();
std::unique_ptr<Metric> ev(Metric::Create(metric.c_str(), &tparam_));
this->ConfigurationWithKnownData(data);
this->PredictRaw(data, &preds_[data]);
obj_->EvalTransform(&preds_[data]);
return std::make_pair(metric,
ev->Eval(preds_[data], data->Info(),
tparam_.dsplit == DataSplitMode::kRow));
}
void Predict(DMatrix* data, bool output_margin,
HostDeviceVector<bst_float>* out_preds, unsigned ntree_limit,
bool pred_leaf, bool pred_contribs, bool approx_contribs,
bool pred_interactions) override {
bool multiple_predictions = static_cast<int>(pred_leaf) +
static_cast<int>(pred_interactions) +
static_cast<int>(pred_contribs);
CHECK_LE(multiple_predictions, 1) << "Perform one kind of prediction at a time.";
if (pred_contribs) {
gbm_->PredictContribution(data, &out_preds->HostVector(), ntree_limit, approx_contribs);
} else if (pred_interactions) {
gbm_->PredictInteractionContributions(data, &out_preds->HostVector(), ntree_limit,
approx_contribs);
} else if (pred_leaf) {
gbm_->PredictLeaf(data, &out_preds->HostVector(), ntree_limit);
} else {
this->PredictRaw(data, out_preds, ntree_limit);
if (!output_margin) {
obj_->PredTransform(out_preds);
}
}
}
const std::map<std::string, std::string>& GetConfigurationArguments() const override {
return cfg_;
}
protected:
// Revise `tree_method` and `updater` parameters after seeing the training
// data matrix
inline void PerformTreeMethodHeuristic(DMatrix* p_train) {
if (name_gbm_ != "gbtree" || cfg_.count("updater") > 0) {
// 1. This method is not applicable for non-tree learners
// 2. This method is disabled when `updater` parameter is explicitly
// set, since only experts are expected to do so.
return;
}
const TreeMethod current_tree_method = tparam_.tree_method;
if (rabit::IsDistributed()) {
CHECK(tparam_.dsplit != DataSplitMode::kAuto)
<< "Precondition violated; dsplit cannot be 'auto' in distributed mode";
if (tparam_.dsplit == DataSplitMode::kCol) {
// 'distcol' updater hidden until it becomes functional again
// See discussion at https://github.com/dmlc/xgboost/issues/1832
LOG(FATAL) << "Column-wise data split is currently not supported.";
}
switch (current_tree_method) {
case TreeMethod::kAuto:
LOG(WARNING) <<
"Tree method is automatically selected to be 'approx' "
"for distributed training.";
break;
case TreeMethod::kApprox:
case TreeMethod::kHist:
// things are okay, do nothing
break;
case TreeMethod::kExact:
LOG(WARNING) << "Tree method was set to be "
<< "exact"
<< "', but only 'approx' and 'hist' is available for distributed "
"training. The `tree_method` parameter is now being "
"changed to 'approx'";
break;
case TreeMethod::kGPUExact:
case TreeMethod::kGPUHist:
LOG(FATAL) << "Distributed training is not available with GPU algoritms";
break;
default:
LOG(FATAL) << "Unknown tree_method ("
<< static_cast<int>(current_tree_method) << ") detected";
}
if (current_tree_method != TreeMethod::kHist) {
LOG(WARNING) << "Tree method is automatically selected to be 'approx'"
" for distributed training.";
tparam_.tree_method = TreeMethod::kApprox;
} else {
LOG(WARNING) << "Tree method is specified to be 'hist'"
" for distributed training.";
tparam_.tree_method = TreeMethod::kHist;
}
} else if (!p_train->SingleColBlock()) {
/* Some tree methods are not available for external-memory DMatrix */
switch (current_tree_method) {
case TreeMethod::kAuto:
LOG(WARNING) << "Tree method is automatically set to 'approx' "
"since external-memory data matrix is used.";
break;
case TreeMethod::kApprox:
// things are okay, do nothing
break;
case TreeMethod::kExact:
LOG(WARNING) << "Tree method was set to be 'exact', "
"but currently we are only able to proceed with "
"approximate algorithm ('approx') because external-"
"memory data matrix is used.";
break;
case TreeMethod::kHist:
// things are okay, do nothing
break;
case TreeMethod::kGPUExact:
case TreeMethod::kGPUHist:
LOG(FATAL)
<< "External-memory data matrix is not available with GPU algorithms";
break;
default:
LOG(FATAL) << "Unknown tree_method ("
<< static_cast<int>(current_tree_method) << ") detected";
}
tparam_.tree_method = TreeMethod::kApprox;
} else if (p_train->Info().num_row_ >= (4UL << 20UL)
&& current_tree_method == TreeMethod::kAuto) {
/* Choose tree_method='approx' automatically for large data matrix */
LOG(WARNING) << "Tree method is automatically selected to be "
"'approx' for faster speed. To use old behavior "
"(exact greedy algorithm on single machine), "
"set tree_method to 'exact'.";
tparam_.tree_method = TreeMethod::kApprox;
}
/* If tree_method was changed, re-configure updaters and gradient boosters */
if (tparam_.tree_method != current_tree_method) {
ConfigureUpdaters();
if (gbm_ != nullptr) {
gbm_->Configure(cfg_.begin(), cfg_.end());
}
}
}
// return whether model is already initialized.
inline bool ModelInitialized() const { return gbm_ != nullptr; }
// lazily initialize the model based on configuration if it haven't yet been initialized.
inline void LazyInitModel() {
if (this->ModelInitialized()) return;
// estimate feature bound
// TODO(hcho3): Change num_feature to 64-bit integer
unsigned num_feature = 0;
for (auto & matrix : cache_) {
CHECK(matrix != nullptr);
const uint64_t num_col = matrix->Info().num_col_;
CHECK_LE(num_col, static_cast<uint64_t>(std::numeric_limits<unsigned>::max()))
<< "Unfortunately, XGBoost does not support data matrices with "
<< std::numeric_limits<unsigned>::max() << " features or greater";
num_feature = std::max(num_feature, static_cast<unsigned>(num_col));
}
// run allreduce on num_feature to find the maximum value
rabit::Allreduce<rabit::op::Max>(&num_feature, 1);
if (num_feature > mparam_.num_feature) {
mparam_.num_feature = num_feature;
}
CHECK_NE(mparam_.num_feature, 0)
<< "0 feature is supplied. Are you using raw Booster interface?";
// setup
cfg_["num_feature"] = common::ToString(mparam_.num_feature);
CHECK(obj_ == nullptr && gbm_ == nullptr);
obj_.reset(ObjFunction::Create(name_obj_, &tparam_));
obj_->Configure(cfg_.begin(), cfg_.end());
// reset the base score
mparam_.base_score = obj_->ProbToMargin(mparam_.base_score);
gbm_.reset(GradientBooster::Create(name_gbm_, &tparam_,
cache_, mparam_.base_score));
gbm_->Configure(cfg_.begin(), cfg_.end());
}
/*!
* \brief get un-transformed prediction
* \param data training data matrix
* \param out_preds output vector that stores the prediction
* \param ntree_limit limit number of trees used for boosted tree
* predictor, when it equals 0, this means we are using all the trees
*/
void PredictRaw(DMatrix* data, HostDeviceVector<bst_float>* out_preds,
unsigned ntree_limit = 0) {
CHECK(gbm_ != nullptr)
<< "Predict must happen after Load or InitModel";
ConfigurationWithKnownData(data);
gbm_->PredictBatch(data, out_preds, ntree_limit);
}
void ValidateDMatrix(DMatrix* p_fmat) {
MetaInfo const& info = p_fmat->Info();
auto const& weights = info.weights_.HostVector();
if (info.group_ptr_.size() != 0 && weights.size() != 0) {
CHECK(weights.size() == info.group_ptr_.size() - 1)
<< "\n"
<< "weights size: " << weights.size() << ", "
<< "groups size: " << info.group_ptr_.size() -1 << ", "
<< "num rows: " << p_fmat->Info().num_row_ << "\n"
<< "Number of weights should be equal to number of groups in ranking task.";
}
}
// model parameter
LearnerModelParam mparam_;
// configurations
std::map<std::string, std::string> cfg_;
// attributes
std::map<std::string, std::string> attributes_;
// name of gbm
std::string name_gbm_;
// name of objective function
std::string name_obj_;
// temporal storages for prediction
std::map<DMatrix*, HostDeviceVector<bst_float>> preds_;
// gradient pairs
HostDeviceVector<GradientPair> gpair_;
private:
/*! \brief random number transformation seed. */
static const int kRandSeedMagic = 127;
// internal cached dmatrix
std::vector<std::shared_ptr<DMatrix> > cache_;
common::Monitor monitor_;
};
Learner* Learner::Create(
const std::vector<std::shared_ptr<DMatrix> >& cache_data) {
return new LearnerImpl(cache_data);
}
} // namespace xgboost