xgboost/tests/cpp/predictor/test_cpu_predictor.cc
Jiaming Yuan 77c844cef7
Reduce thread contention in column split tests. (#10658)
---------

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2024-08-01 18:36:46 +08:00

208 lines
6.7 KiB
C++

/**
* Copyright 2017-2024, XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/predictor.h>
#include "../../../src/collective/communicator-inl.h"
#include "../../../src/data/adapter.h"
#include "../../../src/data/proxy_dmatrix.h"
#include "../../../src/gbm/gbtree.h"
#include "../../../src/gbm/gbtree_model.h"
#include "../collective/test_worker.h" // for TestDistributedGlobal
#include "../filesystem.h" // dmlc::TemporaryDirectory
#include "../helpers.h"
#include "test_predictor.h"
namespace xgboost {
TEST(CpuPredictor, Basic) {
Context ctx;
size_t constexpr kRows = 5;
size_t constexpr kCols = 5;
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
TestBasic(dmat.get(), &ctx);
}
namespace {
void TestColumnSplit() {
Context ctx;
size_t constexpr kRows = 5;
size_t constexpr kCols = 5;
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
auto const world_size = collective::GetWorldSize();
auto const rank = collective::GetRank();
dmat = std::unique_ptr<DMatrix>{dmat->SliceCol(world_size, rank)};
TestBasic(dmat.get(), &ctx);
}
} // anonymous namespace
TEST(CpuPredictor, BasicColumnSplit) {
auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(kWorldSize, TestColumnSplit);
}
TEST(CpuPredictor, IterationRange) {
Context ctx;
TestIterationRange(&ctx);
}
TEST(CpuPredictor, IterationRangeColmnSplit) {
auto constexpr kWorldSize = 2;
TestIterationRangeColumnSplit(kWorldSize, false);
}
TEST(CpuPredictor, ExternalMemory) {
Context ctx;
size_t constexpr kPageSize = 64, kEntriesPerCol = 3;
size_t constexpr kEntries = kPageSize * kEntriesPerCol * 2;
std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(kEntries);
TestBasic(dmat.get(), &ctx);
}
TEST(CpuPredictor, InplacePredict) {
bst_idx_t constexpr kRows{128};
bst_feature_t constexpr kCols{64};
Context ctx;
auto gen = RandomDataGenerator{kRows, kCols, 0.5}.Device(ctx.Device());
{
HostDeviceVector<float> data;
gen.GenerateDense(&data);
ASSERT_EQ(data.Size(), kRows * kCols);
std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy{}};
auto array_interface = GetArrayInterface(&data, kRows, kCols);
std::string arr_str;
Json::Dump(array_interface, &arr_str);
x->SetArrayData(arr_str.data());
TestInplacePrediction(&ctx, x, kRows, kCols);
}
{
HostDeviceVector<float> data;
HostDeviceVector<std::size_t> rptrs;
HostDeviceVector<bst_feature_t> columns;
gen.GenerateCSR(&data, &rptrs, &columns);
auto data_interface = GetArrayInterface(&data, kRows * kCols, 1);
auto rptr_interface = GetArrayInterface(&rptrs, kRows + 1, 1);
auto col_interface = GetArrayInterface(&columns, kRows * kCols, 1);
std::string data_str, rptr_str, col_str;
Json::Dump(data_interface, &data_str);
Json::Dump(rptr_interface, &rptr_str);
Json::Dump(col_interface, &col_str);
std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy};
x->SetCSRData(rptr_str.data(), col_str.data(), data_str.data(), kCols, true);
TestInplacePrediction(&ctx, x, kRows, kCols);
}
}
namespace {
void TestUpdatePredictionCache(bool use_subsampling) {
std::size_t constexpr kRows = 64, kCols = 16, kClasses = 4;
LearnerModelParam mparam{MakeMP(kCols, .0, kClasses)};
Context ctx;
std::unique_ptr<gbm::GBTree> gbm;
gbm.reset(static_cast<gbm::GBTree*>(GradientBooster::Create("gbtree", &ctx, &mparam)));
Args args{{"tree_method", "hist"}};
if (use_subsampling) {
args.emplace_back("subsample", "0.5");
}
gbm->Configure(args);
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix(true, true, kClasses);
linalg::Matrix<GradientPair> gpair({kRows, kClasses}, ctx.Device());
auto h_gpair = gpair.HostView();
for (size_t i = 0; i < kRows * kClasses; ++i) {
std::apply(h_gpair, linalg::UnravelIndex(i, kRows, kClasses)) = {static_cast<float>(i), 1};
}
PredictionCacheEntry predtion_cache;
predtion_cache.predictions.Resize(kRows * kClasses, 0);
// after one training iteration predtion_cache is filled with cached in QuantileHistMaker
// prediction values
gbm->DoBoost(dmat.get(), &gpair, &predtion_cache, nullptr);
PredictionCacheEntry out_predictions;
// perform prediction from scratch on the same input data, should be equal to cached result
gbm->PredictBatch(dmat.get(), &out_predictions, false, 0, 0);
std::vector<float>& out_predictions_h = out_predictions.predictions.HostVector();
std::vector<float>& predtion_cache_from_train = predtion_cache.predictions.HostVector();
for (size_t i = 0; i < out_predictions_h.size(); ++i) {
ASSERT_NEAR(out_predictions_h[i], predtion_cache_from_train[i], kRtEps);
}
}
} // namespace
TEST(CPUPredictor, GHistIndexTraining) {
size_t constexpr kRows{128}, kCols{16}, kBins{64};
Context ctx;
auto p_hist = RandomDataGenerator{kRows, kCols, 0.0}.Bins(kBins).GenerateQuantileDMatrix(false);
HostDeviceVector<float> storage(kRows * kCols);
auto columnar = RandomDataGenerator{kRows, kCols, 0.0}.GenerateArrayInterface(&storage);
auto adapter = data::ArrayAdapter(columnar.c_str());
std::shared_ptr<DMatrix> p_full{
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)};
TestTrainingPrediction(&ctx, kRows, kBins, p_full, p_hist, true);
}
TEST(CPUPredictor, CategoricalPrediction) {
TestCategoricalPrediction(false, false);
}
TEST(CPUPredictor, CategoricalPredictionColumnSplit) {
auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(kWorldSize, [] { TestCategoricalPrediction(false, true); });
}
TEST(CPUPredictor, CategoricalPredictLeaf) {
Context ctx;
TestCategoricalPredictLeaf(&ctx, false);
}
TEST(CPUPredictor, CategoricalPredictLeafColumnSplit) {
auto constexpr kWorldSize = 2;
Context ctx;
collective::TestDistributedGlobal(kWorldSize, [&] { TestCategoricalPredictLeaf(&ctx, true); });
}
TEST(CpuPredictor, UpdatePredictionCache) {
TestUpdatePredictionCache(false);
TestUpdatePredictionCache(true);
}
TEST(CpuPredictor, LesserFeatures) {
Context ctx;
TestPredictionWithLesserFeatures(&ctx);
}
TEST(CpuPredictor, LesserFeaturesColumnSplit) {
auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(kWorldSize,
[] { TestPredictionWithLesserFeaturesColumnSplit(false); });
}
TEST(CpuPredictor, Sparse) {
Context ctx;
TestSparsePrediction(&ctx, 0.2);
TestSparsePrediction(&ctx, 0.8);
}
TEST(CpuPredictor, SparseColumnSplit) {
auto constexpr kWorldSize = 2;
TestSparsePredictionColumnSplit(kWorldSize, false, 0.2);
TestSparsePredictionColumnSplit(kWorldSize, false, 0.8);
}
TEST(CpuPredictor, Multi) {
Context ctx;
ctx.nthread = 1;
TestVectorLeafPrediction(&ctx);
}
TEST(CpuPredictor, Access) { TestPredictionDeviceAccess(); }
} // namespace xgboost