xgboost/tests/cpp/predictor/test_predictor.h
Jiaming Yuan f79cc4a7a4
Implement categorical prediction for CPU and GPU predict leaf. (#7001)
* Categorical prediction with CPU predictor and GPU predict leaf.

* Implement categorical prediction for CPU prediction.
* Implement categorical prediction for GPU predict leaf.
* Refactor the prediction functions to have a unified get next node function.

Co-authored-by: Shvets Kirill <kirill.shvets@intel.com>
2021-06-11 10:11:45 +08:00

74 lines
2.6 KiB
C++

#ifndef XGBOOST_TEST_PREDICTOR_H_
#define XGBOOST_TEST_PREDICTOR_H_
#include <xgboost/predictor.h>
#include <string>
#include <cstddef>
#include "../helpers.h"
namespace xgboost {
template <typename Page>
void TestPredictionFromGradientIndex(std::string name, size_t rows, size_t cols,
std::shared_ptr<DMatrix> p_hist) {
constexpr size_t kClasses { 3 };
LearnerModelParam param;
param.num_feature = cols;
param.num_output_group = kClasses;
param.base_score = 0.5;
auto lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> predictor =
std::unique_ptr<Predictor>(Predictor::Create(name, &lparam));
predictor->Configure({});
gbm::GBTreeModel model = CreateTestModel(&param, kClasses);
{
auto p_precise = RandomDataGenerator(rows, cols, 0).GenerateDMatrix();
PredictionCacheEntry approx_out_predictions;
predictor->InitOutPredictions(p_hist->Info(), &approx_out_predictions.predictions, model);
predictor->PredictBatch(p_hist.get(), &approx_out_predictions, model, 0);
PredictionCacheEntry precise_out_predictions;
predictor->InitOutPredictions(p_precise->Info(), &precise_out_predictions.predictions, model);
predictor->PredictBatch(p_precise.get(), &precise_out_predictions, model, 0);
for (size_t i = 0; i < rows; ++i) {
CHECK_EQ(approx_out_predictions.predictions.HostVector()[i],
precise_out_predictions.predictions.HostVector()[i]);
}
}
{
// Predictor should never try to create the histogram index by itself. As only
// histogram index from training data is valid and predictor doesn't known which
// matrix is used for training.
auto p_dmat = RandomDataGenerator(rows, cols, 0).GenerateDMatrix();
PredictionCacheEntry precise_out_predictions;
predictor->InitOutPredictions(p_dmat->Info(), &precise_out_predictions.predictions, model);
predictor->PredictBatch(p_dmat.get(), &precise_out_predictions, model, 0);
ASSERT_FALSE(p_dmat->PageExists<Page>());
}
}
// p_full and p_hist should come from the same data set.
void TestTrainingPrediction(size_t rows, size_t bins, std::string tree_method,
std::shared_ptr<DMatrix> p_full,
std::shared_ptr<DMatrix> p_hist);
void TestInplacePrediction(dmlc::any x, std::string predictor,
bst_row_t rows, bst_feature_t cols,
int32_t device = -1);
void TestPredictionWithLesserFeatures(std::string preditor_name);
void TestCategoricalPrediction(std::string name);
void TestCategoricalPredictLeaf(StringView name);
} // namespace xgboost
#endif // XGBOOST_TEST_PREDICTOR_H_