xgboost/tests/cpp/predictor/test_gpu_predictor.cu
Jiaming Yuan c35cdecddd
Move prediction cache to Learner. (#5220)
* Move prediction cache into Learner.

* Clean-ups

- Remove duplicated cache in Learner and GBM.
- Remove ad-hoc fix of invalid cache.
- Remove `PredictFromCache` in predictors.
- Remove prediction cache for linear altogether, as it's only moving the
  prediction into training process but doesn't provide any actual overall speed
  gain.
- The cache is now unique to Learner, which means the ownership is no longer
  shared by any other components.

* Changes

- Add version to prediction cache.
- Use weak ptr to check expired DMatrix.
- Pass shared pointer instead of raw pointer.
2020-02-14 13:04:23 +08:00

96 lines
3.3 KiB
Plaintext

/*!
* Copyright 2017-2020 XGBoost contributors
*/
#include <dmlc/filesystem.h>
#include <xgboost/c_api.h>
#include <xgboost/predictor.h>
#include <xgboost/logging.h>
#include <xgboost/learner.h>
#include <string>
#include "gtest/gtest.h"
#include "../helpers.h"
#include "../../../src/gbm/gbtree_model.h"
namespace xgboost {
namespace predictor {
TEST(GpuPredictor, Basic) {
auto cpu_lparam = CreateEmptyGenericParam(-1);
auto gpu_lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &gpu_lparam));
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &cpu_lparam));
gpu_predictor->Configure({});
cpu_predictor->Configure({});
for (size_t i = 1; i < 33; i *= 2) {
int n_row = i, n_col = i;
auto dmat = CreateDMatrix(n_row, n_col, 0);
LearnerModelParam param;
param.num_feature = n_col;
param.num_output_group = 1;
param.base_score = 0.5;
gbm::GBTreeModel model = CreateTestModel(&param);
// Test predict batch
PredictionCacheEntry gpu_out_predictions;
PredictionCacheEntry cpu_out_predictions;
gpu_predictor->PredictBatch((*dmat).get(), &gpu_out_predictions, model, 0);
ASSERT_EQ(model.trees.size(), gpu_out_predictions.version);
cpu_predictor->PredictBatch((*dmat).get(), &cpu_out_predictions, model, 0);
std::vector<float>& gpu_out_predictions_h = gpu_out_predictions.predictions.HostVector();
std::vector<float>& cpu_out_predictions_h = cpu_out_predictions.predictions.HostVector();
float abs_tolerance = 0.001;
for (int j = 0; j < gpu_out_predictions.predictions.Size(); j++) {
ASSERT_NEAR(gpu_out_predictions_h[j], cpu_out_predictions_h[j], abs_tolerance);
}
delete dmat;
}
}
TEST(gpu_predictor, ExternalMemoryTest) {
auto lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor", &lparam));
gpu_predictor->Configure({});
LearnerModelParam param;
param.num_feature = 2;
const int n_classes = 3;
param.num_output_group = n_classes;
param.base_score = 0.5;
gbm::GBTreeModel model = CreateTestModel(&param, n_classes);
std::vector<std::unique_ptr<DMatrix>> dmats;
dmlc::TemporaryDirectory tmpdir;
std::string file0 = tmpdir.path + "/big_0.libsvm";
std::string file1 = tmpdir.path + "/big_1.libsvm";
std::string file2 = tmpdir.path + "/big_2.libsvm";
dmats.push_back(CreateSparsePageDMatrix(9, 64UL, file0));
dmats.push_back(CreateSparsePageDMatrix(128, 128UL, file1));
dmats.push_back(CreateSparsePageDMatrix(1024, 1024UL, file2));
for (const auto& dmat: dmats) {
dmat->Info().base_margin_.Resize(dmat->Info().num_row_ * n_classes, 0.5);
PredictionCacheEntry out_predictions;
gpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
EXPECT_EQ(out_predictions.predictions.Size(), dmat->Info().num_row_ * n_classes);
const std::vector<float> &host_vector = out_predictions.predictions.ConstHostVector();
for (int i = 0; i < host_vector.size() / n_classes; i++) {
ASSERT_EQ(host_vector[i * n_classes], 2.0);
ASSERT_EQ(host_vector[i * n_classes + 1], 0.5);
ASSERT_EQ(host_vector[i * n_classes + 2], 0.5);
}
}
}
} // namespace predictor
} // namespace xgboost