xgboost/tests/cpp/common/test_hist_util.h
2020-02-18 16:49:17 +13:00

167 lines
6.0 KiB
C++

#pragma once
#include <gtest/gtest.h>
#include <dmlc/filesystem.h>
#include <random>
#include <vector>
#include <string>
#include <fstream>
#include "../../../src/common/hist_util.h"
#include "../../../src/data/simple_dmatrix.h"
#include "../../../src/data/adapter.h"
// Some helper functions used to test both GPU and CPU algorithms
//
namespace xgboost {
namespace common {
// Generate columns with different ranges
inline std::vector<float> GenerateRandom(int num_rows, int num_columns) {
std::vector<float> x(num_rows*num_columns);
std::mt19937 rng(0);
std::uniform_real_distribution<float> dist(0.0, 1.0);
std::generate(x.begin(), x.end(), [&]() { return dist(rng); });
for (auto i = 0; i < num_columns; i++) {
for (auto j = 0; j < num_rows; j++) {
x[j * num_columns + i] += i;
}
}
return x;
}
inline std::vector<float> GenerateRandomCategoricalSingleColumn(int n,
int num_categories) {
std::vector<float> x(n);
std::mt19937 rng(0);
std::uniform_int_distribution<int> dist(0, num_categories - 1);
std::generate(x.begin(), x.end(), [&]() { return dist(rng); });
// Make sure each category is present
for(auto i = 0; i < num_categories; i++) {
x[i] = i;
}
return x;
}
inline std::shared_ptr<data::SimpleDMatrix> GetDMatrixFromData(const std::vector<float>& x, int num_rows, int num_columns) {
data::DenseAdapter adapter(x.data(), num_rows, num_columns);
return std::shared_ptr<data::SimpleDMatrix>(new data::SimpleDMatrix(
&adapter, std::numeric_limits<float>::quiet_NaN(),
1));
}
inline std::shared_ptr<DMatrix> GetExternalMemoryDMatrixFromData(
const std::vector<float>& x, int num_rows, int num_columns,
size_t page_size, const dmlc::TemporaryDirectory& tempdir) {
// Create the svm file in a temp dir
const std::string tmp_file = tempdir.path + "/temp.libsvm";
std::ofstream fo(tmp_file.c_str());
for (auto i = 0; i < num_rows; i++) {
std::stringstream row_data;
for (auto j = 0; j < num_columns; j++) {
row_data << 1 << " " << j << ":" << std::setprecision(15)
<< x[i * num_columns + j];
}
fo << row_data.str() << "\n";
}
fo.close();
return std::shared_ptr<DMatrix>(DMatrix::Load(
tmp_file + "#" + tmp_file + ".cache", true, false, "auto", page_size));
}
// Test that elements are approximately equally distributed among bins
inline void TestBinDistribution(const HistogramCuts& cuts, int column_idx,
const std::vector<float>& column,
int num_bins) {
std::map<int, int> counts;
for (auto& v : column) {
counts[cuts.SearchBin(v, column_idx)]++;
}
int local_num_bins = cuts.Ptrs()[column_idx + 1] - cuts.Ptrs()[column_idx];
int expected_num_elements = column.size() / local_num_bins;
// Allow about 30% deviation. This test is not very strict, it only ensures
// roughly equal distribution
int allowable_error = std::max(2, int(expected_num_elements * 0.3));
// First and last bin can have smaller
for (auto& kv : counts) {
EXPECT_LE(std::abs(counts[kv.first] - expected_num_elements),
allowable_error );
}
}
// Test sketch quantiles against the real quantiles
// Not a very strict test
inline void TestRank(const std::vector<float>& cuts,
const std::vector<float>& sorted_x) {
float eps = 0.05;
// Ignore the last cut, its special
size_t j = 0;
for (auto i = 0; i < cuts.size() - 1; i++) {
int expected_rank = ((i+1) * sorted_x.size()) / cuts.size();
while (cuts[i] > sorted_x[j]) {
j++;
}
int actual_rank = j;
int acceptable_error = std::max(2, int(sorted_x.size() * eps));
ASSERT_LE(std::abs(expected_rank - actual_rank), acceptable_error);
}
}
inline void ValidateColumn(const HistogramCuts& cuts, int column_idx,
const std::vector<float>& column,
int num_bins) {
std::vector<float> sorted_column(column);
std::sort(sorted_column.begin(), sorted_column.end());
// Check the endpoints are correct
EXPECT_LT(cuts.MinValues()[column_idx], sorted_column.front());
EXPECT_GT(cuts.Values()[cuts.Ptrs()[column_idx]], sorted_column.front());
EXPECT_GE(cuts.Values()[cuts.Ptrs()[column_idx+1]-1], sorted_column.back());
// Check the cuts are sorted
auto cuts_begin = cuts.Values().begin() + cuts.Ptrs()[column_idx];
auto cuts_end = cuts.Values().begin() + cuts.Ptrs()[column_idx + 1];
EXPECT_TRUE(std::is_sorted(cuts_begin, cuts_end));
// Check all cut points are unique
EXPECT_EQ(std::set<float>(cuts_begin, cuts_end).size(),
cuts_end - cuts_begin);
if (sorted_column.size() <= num_bins) {
// Less unique values than number of bins
// Each value should get its own bin
// First check the inputs are unique
int num_unique =
std::set<float>(sorted_column.begin(), sorted_column.end()).size();
EXPECT_EQ(num_unique, sorted_column.size());
for (auto i = 0ull; i < sorted_column.size(); i++) {
ASSERT_EQ(cuts.SearchBin(sorted_column[i], column_idx),
cuts.Ptrs()[column_idx] + i);
}
}
int num_cuts_column = cuts.Ptrs()[column_idx + 1] - cuts.Ptrs()[column_idx];
std::vector<float> column_cuts(num_cuts_column);
std::copy(cuts.Values().begin() + cuts.Ptrs()[column_idx],
cuts.Values().begin() + cuts.Ptrs()[column_idx + 1],
column_cuts.begin());
TestBinDistribution(cuts, column_idx, sorted_column, num_bins);
TestRank(column_cuts, sorted_column);
}
// x is dense and row major
inline void ValidateCuts(const HistogramCuts& cuts, std::vector<float>& x,
int num_rows, int num_columns,
int num_bins) {
for (auto i = 0; i < num_columns; i++) {
// Extract the column
std::vector<float> column(num_rows);
for (auto j = 0; j < num_rows; j++) {
column[j] = x[j*num_columns + i];
}
ValidateColumn(cuts,i, column, num_bins);
}
}
} // namespace common
} // namespace xgboost