- Remove unused parameters. There are still many warnings that are not yet addressed. Currently, the warnings in dmlc-core dominate the error log. - Remove `distributed` parameter from metric. - Fixes some warnings about signed comparison.
151 lines
5.9 KiB
C++
151 lines
5.9 KiB
C++
/*!
|
|
* Copyright 2021-2022 XGBoost contributors
|
|
*
|
|
* \brief Implementation for the approx tree method.
|
|
*/
|
|
#ifndef XGBOOST_TREE_UPDATER_APPROX_H_
|
|
#define XGBOOST_TREE_UPDATER_APPROX_H_
|
|
|
|
#include <limits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "../common/partition_builder.h"
|
|
#include "../common/random.h"
|
|
#include "constraints.h"
|
|
#include "driver.h"
|
|
#include "hist/evaluate_splits.h"
|
|
#include "hist/expand_entry.h"
|
|
#include "param.h"
|
|
#include "xgboost/generic_parameters.h"
|
|
#include "xgboost/json.h"
|
|
#include "xgboost/tree_updater.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
class ApproxRowPartitioner {
|
|
static constexpr size_t kPartitionBlockSize = 2048;
|
|
common::PartitionBuilder<kPartitionBlockSize> partition_builder_;
|
|
common::RowSetCollection row_set_collection_;
|
|
|
|
public:
|
|
bst_row_t base_rowid = 0;
|
|
|
|
static auto SearchCutValue(bst_row_t ridx, bst_feature_t fidx, GHistIndexMatrix const &index,
|
|
std::vector<uint32_t> const &cut_ptrs,
|
|
std::vector<float> const &cut_values) {
|
|
int32_t gidx = -1;
|
|
if (index.IsDense()) {
|
|
// RowIdx returns the starting pos of this row
|
|
gidx = index.index[index.RowIdx(ridx) + fidx];
|
|
} else {
|
|
auto begin = index.RowIdx(ridx);
|
|
auto end = index.RowIdx(ridx + 1);
|
|
auto f_begin = cut_ptrs[fidx];
|
|
auto f_end = cut_ptrs[fidx + 1];
|
|
gidx = common::BinarySearchBin(begin, end, index.index, f_begin, f_end);
|
|
}
|
|
if (gidx == -1) {
|
|
return std::numeric_limits<float>::quiet_NaN();
|
|
}
|
|
return cut_values[gidx];
|
|
}
|
|
|
|
public:
|
|
void UpdatePosition(GenericParameter const *ctx, GHistIndexMatrix const &index,
|
|
std::vector<CPUExpandEntry> const &candidates, RegTree const *p_tree) {
|
|
size_t n_nodes = candidates.size();
|
|
|
|
auto const &cut_values = index.cut.Values();
|
|
auto const &cut_ptrs = index.cut.Ptrs();
|
|
|
|
common::BlockedSpace2d space{n_nodes,
|
|
[&](size_t node_in_set) {
|
|
auto candidate = candidates[node_in_set];
|
|
int32_t nid = candidate.nid;
|
|
return row_set_collection_[nid].Size();
|
|
},
|
|
kPartitionBlockSize};
|
|
partition_builder_.Init(space.Size(), n_nodes, [&](size_t node_in_set) {
|
|
auto candidate = candidates[node_in_set];
|
|
const int32_t nid = candidate.nid;
|
|
const size_t size = row_set_collection_[nid].Size();
|
|
const size_t n_tasks = size / kPartitionBlockSize + !!(size % kPartitionBlockSize);
|
|
return n_tasks;
|
|
});
|
|
auto node_ptr = p_tree->GetCategoriesMatrix().node_ptr;
|
|
auto categories = p_tree->GetCategoriesMatrix().categories;
|
|
common::ParallelFor2d(space, ctx->Threads(), [&](size_t node_in_set, common::Range1d r) {
|
|
auto candidate = candidates[node_in_set];
|
|
auto is_cat = candidate.split.is_cat;
|
|
const int32_t nid = candidate.nid;
|
|
auto fidx = candidate.split.SplitIndex();
|
|
const size_t task_id = partition_builder_.GetTaskIdx(node_in_set, r.begin());
|
|
partition_builder_.AllocateForTask(task_id);
|
|
partition_builder_.PartitionRange(
|
|
node_in_set, nid, r, &row_set_collection_, [&](size_t row_id) {
|
|
auto cut_value = SearchCutValue(row_id, fidx, index, cut_ptrs, cut_values);
|
|
if (std::isnan(cut_value)) {
|
|
return candidate.split.DefaultLeft();
|
|
}
|
|
bst_node_t nidx = candidate.nid;
|
|
auto segment = node_ptr[nidx];
|
|
auto node_cats = categories.subspan(segment.beg, segment.size);
|
|
bool go_left = true;
|
|
if (is_cat) {
|
|
go_left = common::Decision(node_cats, cut_value, candidate.split.DefaultLeft());
|
|
} else {
|
|
go_left = cut_value <= candidate.split.split_value;
|
|
}
|
|
return go_left;
|
|
});
|
|
});
|
|
|
|
partition_builder_.CalculateRowOffsets();
|
|
common::ParallelFor2d(space, ctx->Threads(), [&](size_t node_in_set, common::Range1d r) {
|
|
auto candidate = candidates[node_in_set];
|
|
const int32_t nid = candidate.nid;
|
|
partition_builder_.MergeToArray(node_in_set, r.begin(),
|
|
const_cast<size_t *>(row_set_collection_[nid].begin));
|
|
});
|
|
for (size_t i = 0; i < candidates.size(); ++i) {
|
|
auto const &candidate = candidates[i];
|
|
auto nidx = candidate.nid;
|
|
auto n_left = partition_builder_.GetNLeftElems(i);
|
|
auto n_right = partition_builder_.GetNRightElems(i);
|
|
CHECK_EQ(n_left + n_right, row_set_collection_[nidx].Size());
|
|
bst_node_t left_nidx = (*p_tree)[nidx].LeftChild();
|
|
bst_node_t right_nidx = (*p_tree)[nidx].RightChild();
|
|
row_set_collection_.AddSplit(nidx, left_nidx, right_nidx, n_left, n_right);
|
|
}
|
|
}
|
|
|
|
auto const &Partitions() const { return row_set_collection_; }
|
|
|
|
void LeafPartition(Context const *ctx, RegTree const &tree, common::Span<float const> hess,
|
|
std::vector<bst_node_t> *p_out_position) const {
|
|
partition_builder_.LeafPartition(ctx, tree, this->Partitions(), p_out_position,
|
|
[&](size_t idx) -> bool { return hess[idx] - .0f == .0f; });
|
|
}
|
|
|
|
auto operator[](bst_node_t nidx) { return row_set_collection_[nidx]; }
|
|
auto const &operator[](bst_node_t nidx) const { return row_set_collection_[nidx]; }
|
|
|
|
size_t Size() const {
|
|
return std::distance(row_set_collection_.begin(), row_set_collection_.end());
|
|
}
|
|
|
|
ApproxRowPartitioner() = default;
|
|
explicit ApproxRowPartitioner(bst_row_t num_row, bst_row_t _base_rowid)
|
|
: base_rowid{_base_rowid} {
|
|
row_set_collection_.Clear();
|
|
auto p_positions = row_set_collection_.Data();
|
|
p_positions->resize(num_row);
|
|
std::iota(p_positions->begin(), p_positions->end(), base_rowid);
|
|
row_set_collection_.Init();
|
|
}
|
|
};
|
|
} // namespace tree
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_TREE_UPDATER_APPROX_H_
|