* Replace existing matrix and vector view. This is to prepare for handling higher dimension data and prediction when we support multi-target models.
113 lines
2.9 KiB
C++
113 lines
2.9 KiB
C++
#include <gtest/gtest.h>
|
|
#include <xgboost/host_device_vector.h>
|
|
#include <xgboost/linalg.h>
|
|
|
|
#include <numeric>
|
|
|
|
namespace xgboost {
|
|
namespace linalg {
|
|
auto MakeMatrixFromTest(HostDeviceVector<float> *storage, size_t n_rows, size_t n_cols) {
|
|
storage->Resize(n_rows * n_cols);
|
|
auto &h_storage = storage->HostVector();
|
|
|
|
std::iota(h_storage.begin(), h_storage.end(), 0);
|
|
|
|
auto m = linalg::TensorView<float, 2>{h_storage, {n_rows, static_cast<size_t>(n_cols)}, -1};
|
|
return m;
|
|
}
|
|
|
|
TEST(Linalg, Matrix) {
|
|
size_t kRows = 31, kCols = 77;
|
|
HostDeviceVector<float> storage;
|
|
auto m = MakeMatrixFromTest(&storage, kRows, kCols);
|
|
ASSERT_EQ(m.DeviceIdx(), GenericParameter::kCpuId);
|
|
ASSERT_EQ(m(0, 0), 0);
|
|
ASSERT_EQ(m(kRows - 1, kCols - 1), storage.Size() - 1);
|
|
}
|
|
|
|
TEST(Linalg, Vector) {
|
|
size_t kRows = 31, kCols = 77;
|
|
HostDeviceVector<float> storage;
|
|
auto m = MakeMatrixFromTest(&storage, kRows, kCols);
|
|
auto v = m.Slice(linalg::All(), 3);
|
|
for (size_t i = 0; i < v.Size(); ++i) {
|
|
ASSERT_EQ(v(i), m(i, 3));
|
|
}
|
|
|
|
ASSERT_EQ(v(0), 3);
|
|
}
|
|
|
|
TEST(Linalg, Tensor) {
|
|
std::vector<double> data(2 * 3 * 4, 0);
|
|
std::iota(data.begin(), data.end(), 0);
|
|
|
|
TensorView<double> t{data, {2, 3, 4}, -1};
|
|
ASSERT_EQ(t.Shape()[0], 2);
|
|
ASSERT_EQ(t.Shape()[1], 3);
|
|
ASSERT_EQ(t.Shape()[2], 4);
|
|
|
|
float v = t(0, 1, 2);
|
|
ASSERT_EQ(v, 6);
|
|
|
|
auto s = t.Slice(1, All(), All());
|
|
ASSERT_EQ(s.Shape().size(), 2);
|
|
ASSERT_EQ(s.Shape()[0], 3);
|
|
ASSERT_EQ(s.Shape()[1], 4);
|
|
|
|
std::vector<std::vector<double>> sol{
|
|
{12.0, 13.0, 14.0, 15.0}, {16.0, 17.0, 18.0, 19.0}, {20.0, 21.0, 22.0, 23.0}};
|
|
for (size_t i = 0; i < s.Shape()[0]; ++i) {
|
|
for (size_t j = 0; j < s.Shape()[1]; ++j) {
|
|
ASSERT_EQ(s(i, j), sol[i][j]);
|
|
}
|
|
}
|
|
|
|
{
|
|
// as vector
|
|
TensorView<double, 1> vec{data, {data.size()}, -1};
|
|
ASSERT_EQ(vec.Size(), data.size());
|
|
ASSERT_EQ(vec.Shape(0), data.size());
|
|
ASSERT_EQ(vec.Shape().size(), 1);
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
ASSERT_EQ(vec(i), data[i]);
|
|
}
|
|
}
|
|
|
|
{
|
|
// as matrix
|
|
TensorView<double, 2> mat(data, {6, 4}, -1);
|
|
auto s = mat.Slice(2, All());
|
|
ASSERT_EQ(s.Shape().size(), 1);
|
|
s = mat.Slice(All(), 1);
|
|
ASSERT_EQ(s.Shape().size(), 1);
|
|
}
|
|
|
|
{
|
|
// assignment
|
|
TensorView<double, 3> t{data, {2, 3, 4}, 0};
|
|
double pi = 3.14159;
|
|
t(1, 2, 3) = pi;
|
|
ASSERT_EQ(t(1, 2, 3), pi);
|
|
}
|
|
|
|
{
|
|
// Don't assign the initial dimension, tensor should be able to deduce the correct dim
|
|
// for Slice.
|
|
TensorView<double> t{data, {2, 3, 4}, 0};
|
|
auto s = t.Slice(1, 2, All());
|
|
static_assert(decltype(s)::kDimension == 1, "");
|
|
}
|
|
}
|
|
|
|
TEST(Linalg, Empty) {
|
|
auto t = TensorView<double, 2>{{}, {0, 3}, GenericParameter::kCpuId};
|
|
for (int32_t i : {0, 1, 2}) {
|
|
auto s = t.Slice(All(), i);
|
|
ASSERT_EQ(s.Size(), 0);
|
|
ASSERT_EQ(s.Shape().size(), 1);
|
|
ASSERT_EQ(s.Shape(0), 0);
|
|
}
|
|
}
|
|
} // namespace linalg
|
|
} // namespace xgboost
|