* Rename `GenericParameter` to `Context`. * Rename header file to reflect the change. * Rename all references.
261 lines
9.7 KiB
C++
261 lines
9.7 KiB
C++
#include <xgboost/metric.h>
|
|
#include "../helpers.h"
|
|
|
|
namespace xgboost {
|
|
namespace metric {
|
|
|
|
TEST(Metric, DeclareUnifiedTest(BinaryAUC)) {
|
|
auto ctx = xgboost::CreateEmptyGenericParam(GPUIDX);
|
|
std::unique_ptr<Metric> uni_ptr {Metric::Create("auc", &ctx)};
|
|
Metric * metric = uni_ptr.get();
|
|
ASSERT_STREQ(metric->Name(), "auc");
|
|
|
|
// Binary
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}), 1.0f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {1, 0}), 0.0f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 0}, {0, 1}), 0.5f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {1, 1}, {0, 1}), 0.5f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 0}, {1, 0}), 0.5f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {1, 1}, {1, 0}), 0.5f, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {1, 0, 0}, {0, 0, 1}), 0.25f, 1e-10);
|
|
|
|
// Invalid dataset
|
|
MetaInfo info;
|
|
info.labels = linalg::Tensor<float, 2>{{0.0f, 0.0f}, {2}, -1};
|
|
float auc = metric->Eval({1, 1}, info);
|
|
ASSERT_TRUE(std::isnan(auc));
|
|
*info.labels.Data() = HostDeviceVector<float>{};
|
|
auc = metric->Eval(HostDeviceVector<float>{}, info);
|
|
ASSERT_TRUE(std::isnan(auc));
|
|
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 1, 0, 1}, {0, 1, 0, 1}), 1.0f, 1e-10);
|
|
|
|
// AUC with instance weights
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{0.9f, 0.1f, 0.4f, 0.3f},
|
|
{0, 0, 1, 1},
|
|
{1.0f, 3.0f, 2.0f, 4.0f}),
|
|
0.75f, 0.001f);
|
|
|
|
// regression test case
|
|
ASSERT_NEAR(GetMetricEval(
|
|
metric,
|
|
{0.79523796, 0.5201713, 0.79523796, 0.24273258, 0.53452194,
|
|
0.53452194, 0.24273258, 0.5201713, 0.79523796, 0.53452194,
|
|
0.24273258, 0.53452194, 0.79523796, 0.5201713, 0.24273258,
|
|
0.5201713, 0.5201713, 0.53452194, 0.5201713, 0.53452194},
|
|
{0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0}),
|
|
0.5, 1e-10);
|
|
}
|
|
|
|
TEST(Metric, DeclareUnifiedTest(MultiClassAUC)) {
|
|
auto ctx = CreateEmptyGenericParam(GPUIDX);
|
|
std::unique_ptr<Metric> uni_ptr{
|
|
Metric::Create("auc", &ctx)};
|
|
auto metric = uni_ptr.get();
|
|
|
|
// MultiClass
|
|
// 3x3
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{
|
|
1.0f, 0.0f, 0.0f, // p_0
|
|
0.0f, 1.0f, 0.0f, // p_1
|
|
0.0f, 0.0f, 1.0f // p_2
|
|
},
|
|
{0, 1, 2}),
|
|
1.0f, 1e-10);
|
|
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{
|
|
1.0f, 0.0f, 0.0f, // p_0
|
|
0.0f, 1.0f, 0.0f, // p_1
|
|
0.0f, 0.0f, 1.0f // p_2
|
|
},
|
|
{0, 1, 2},
|
|
{1.0f, 1.0f, 1.0f}),
|
|
1.0f, 1e-10);
|
|
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{
|
|
1.0f, 0.0f, 0.0f, // p_0
|
|
0.0f, 1.0f, 0.0f, // p_1
|
|
0.0f, 0.0f, 1.0f // p_2
|
|
},
|
|
{2, 1, 0}),
|
|
0.5f, 1e-10);
|
|
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{
|
|
1.0f, 0.0f, 0.0f, // p_0
|
|
0.0f, 1.0f, 0.0f, // p_1
|
|
0.0f, 0.0f, 1.0f // p_2
|
|
},
|
|
{2, 0, 1}),
|
|
0.25f, 1e-10);
|
|
|
|
// invalid dataset
|
|
float auc = GetMetricEval(metric,
|
|
{
|
|
1.0f, 0.0f, 0.0f, // p_0
|
|
0.0f, 1.0f, 0.0f, // p_1
|
|
0.0f, 0.0f, 1.0f // p_2
|
|
},
|
|
{0, 1, 1}); // no class 2.
|
|
EXPECT_TRUE(std::isnan(auc)) << auc;
|
|
|
|
HostDeviceVector<float> predts{
|
|
0.0f, 1.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
};
|
|
std::vector<float> labels {1.0f, 0.0f, 2.0f, 1.0f};
|
|
auc = GetMetricEval(metric, predts, labels, {1.0f, 2.0f, 3.0f, 4.0f});
|
|
ASSERT_GT(auc, 0.714);
|
|
}
|
|
|
|
TEST(Metric, DeclareUnifiedTest(RankingAUC)) {
|
|
auto ctx = CreateEmptyGenericParam(GPUIDX);
|
|
std::unique_ptr<Metric> metric{Metric::Create("auc", &ctx)};
|
|
|
|
// single group
|
|
EXPECT_NEAR(GetMetricEval(metric.get(), {0.7f, 0.2f, 0.3f, 0.6f},
|
|
{1.0f, 0.8f, 0.4f, 0.2f}, /*weights=*/{},
|
|
{0, 4}),
|
|
0.5f, 1e-10);
|
|
|
|
// multi group
|
|
EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1, 2, 0, 1, 2},
|
|
{0, 1, 2, 0, 1, 2}, /*weights=*/{}, {0, 3, 6}),
|
|
1.0f, 1e-10);
|
|
|
|
EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1, 2, 0, 1, 2},
|
|
{0, 1, 2, 0, 1, 2}, /*weights=*/{1.0f, 2.0f},
|
|
{0, 3, 6}),
|
|
1.0f, 1e-10);
|
|
|
|
// AUC metric for grouped datasets - exception scenarios
|
|
ASSERT_TRUE(std::isnan(
|
|
GetMetricEval(metric.get(), {0, 1, 2}, {0, 0, 0}, {}, {0, 2, 3})));
|
|
|
|
// regression case
|
|
HostDeviceVector<float> predt{0.33935383, 0.5149714, 0.32138085, 1.4547751,
|
|
1.2010975, 0.42651367, 0.23104341, 0.83610827,
|
|
0.8494239, 0.07136688, 0.5623144, 0.8086237,
|
|
1.5066161, -4.094787, 0.76887935, -2.4082742};
|
|
std::vector<bst_group_t> groups{0, 7, 16};
|
|
std::vector<float> labels{1., 0., 0., 1., 2., 1., 0., 0.,
|
|
0., 0., 0., 0., 1., 0., 1., 0.};
|
|
|
|
EXPECT_NEAR(GetMetricEval(metric.get(), std::move(predt), labels,
|
|
/*weights=*/{}, groups),
|
|
0.769841f, 1e-6);
|
|
}
|
|
|
|
TEST(Metric, DeclareUnifiedTest(PRAUC)) {
|
|
auto ctx = xgboost::CreateEmptyGenericParam(GPUIDX);
|
|
|
|
xgboost::Metric *metric = xgboost::Metric::Create("aucpr", &ctx);
|
|
ASSERT_STREQ(metric->Name(), "aucpr");
|
|
EXPECT_NEAR(GetMetricEval(metric, {0, 0, 1, 1}, {0, 0, 1, 1}), 1, 1e-10);
|
|
EXPECT_NEAR(GetMetricEval(metric, {0.1f, 0.9f, 0.1f, 0.9f}, {0, 0, 1, 1}),
|
|
0.5f, 0.001f);
|
|
EXPECT_NEAR(GetMetricEval(
|
|
metric,
|
|
{0.4f, 0.2f, 0.9f, 0.1f, 0.2f, 0.4f, 0.1f, 0.1f, 0.2f, 0.1f},
|
|
{0, 0, 0, 0, 0, 1, 0, 0, 1, 1}),
|
|
0.2908445f, 0.001f);
|
|
EXPECT_NEAR(GetMetricEval(
|
|
metric, {0.87f, 0.31f, 0.40f, 0.42f, 0.25f, 0.66f, 0.95f,
|
|
0.09f, 0.10f, 0.97f, 0.76f, 0.69f, 0.15f, 0.20f,
|
|
0.30f, 0.14f, 0.07f, 0.58f, 0.61f, 0.08f},
|
|
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1}),
|
|
0.2769199f, 0.001f);
|
|
auto auc = GetMetricEval(metric, {0, 1}, {});
|
|
ASSERT_TRUE(std::isnan(auc));
|
|
|
|
// AUCPR with instance weights
|
|
EXPECT_NEAR(GetMetricEval(metric,
|
|
{0.29f, 0.52f, 0.11f, 0.21f, 0.219f, 0.93f, 0.493f,
|
|
0.17f, 0.47f, 0.13f, 0.43f, 0.59f, 0.87f, 0.007f},
|
|
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0},
|
|
{1, 2, 7, 4, 5, 2.2f, 3.2f, 5, 6, 1, 2, 1.1f, 3.2f,
|
|
4.5f}), // weights
|
|
0.694435f, 0.001f);
|
|
|
|
// Both groups contain only pos or neg samples.
|
|
auc = GetMetricEval(metric,
|
|
{0, 0.1f, 0.3f, 0.5f, 0.7f},
|
|
{1, 1, 0, 0, 0},
|
|
{},
|
|
{0, 2, 5});
|
|
ASSERT_TRUE(std::isnan(auc));
|
|
delete metric;
|
|
}
|
|
|
|
TEST(Metric, DeclareUnifiedTest(MultiClassPRAUC)) {
|
|
auto ctx = xgboost::CreateEmptyGenericParam(GPUIDX);
|
|
|
|
std::unique_ptr<Metric> metric{Metric::Create("aucpr", &ctx)};
|
|
|
|
float auc = 0;
|
|
std::vector<float> labels {1.0f, 0.0f, 2.0f};
|
|
HostDeviceVector<float> predts{
|
|
0.0f, 1.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
};
|
|
auc = GetMetricEval(metric.get(), predts, labels, {});
|
|
EXPECT_EQ(auc, 1.0f);
|
|
|
|
auc = GetMetricEval(metric.get(), predts, labels, {1.0f, 1.0f, 1.0f});
|
|
EXPECT_EQ(auc, 1.0f);
|
|
|
|
predts.HostVector() = {
|
|
0.0f, 1.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
};
|
|
labels = {1.0f, 0.0f, 2.0f, 1.0f};
|
|
auc = GetMetricEval(metric.get(), predts, labels, {1.0f, 2.0f, 3.0f, 4.0f});
|
|
ASSERT_GT(auc, 0.699);
|
|
}
|
|
|
|
TEST(Metric, DeclareUnifiedTest(RankingPRAUC)) {
|
|
auto ctx = xgboost::CreateEmptyGenericParam(GPUIDX);
|
|
|
|
std::unique_ptr<Metric> metric{Metric::Create("aucpr", &ctx)};
|
|
|
|
std::vector<float> labels {1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f};
|
|
std::vector<uint32_t> groups {0, 2, 6};
|
|
|
|
float auc = 0;
|
|
auc = GetMetricEval(metric.get(), {1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f}, labels, {}, groups);
|
|
EXPECT_EQ(auc, 1.0f);
|
|
|
|
auc = GetMetricEval(metric.get(), {1.0f, 0.5f, 0.8f, 0.3f, 0.2f, 1.0f}, labels, {}, groups);
|
|
EXPECT_EQ(auc, 1.0f);
|
|
|
|
auc = GetMetricEval(metric.get(), {1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f},
|
|
{1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f}, {}, groups);
|
|
ASSERT_TRUE(std::isnan(auc));
|
|
|
|
// Incorrect label
|
|
ASSERT_THROW(GetMetricEval(metric.get(), {1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f},
|
|
{1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 3.0f}, {}, groups),
|
|
dmlc::Error);
|
|
|
|
// AUCPR with groups and no weights
|
|
EXPECT_NEAR(GetMetricEval(
|
|
metric.get(), {0.87f, 0.31f, 0.40f, 0.42f, 0.25f, 0.66f, 0.95f,
|
|
0.09f, 0.10f, 0.97f, 0.76f, 0.69f, 0.15f, 0.20f,
|
|
0.30f, 0.14f, 0.07f, 0.58f, 0.61f, 0.08f},
|
|
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1},
|
|
{}, // weights
|
|
{0, 2, 5, 9, 14, 20}), // group info
|
|
0.556021f, 0.001f);
|
|
}
|
|
} // namespace metric
|
|
} // namespace xgboost
|