361 lines
14 KiB
R
361 lines
14 KiB
R
#' Cross Validation
|
|
#'
|
|
#' The cross validation function of xgboost
|
|
#'
|
|
#' @param params the list of parameters. The complete list of parameters is
|
|
#' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below
|
|
#' is a shorter summary:
|
|
#' \itemize{
|
|
#' \item \code{objective} objective function, common ones are
|
|
#' \itemize{
|
|
#' \item \code{reg:squarederror} Regression with squared loss.
|
|
#' \item \code{binary:logistic} logistic regression for classification.
|
|
#' \item See \code{\link[=xgb.train]{xgb.train}()} for complete list of objectives.
|
|
#' }
|
|
#' \item \code{eta} step size of each boosting step
|
|
#' \item \code{max_depth} maximum depth of the tree
|
|
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
|
|
#' }
|
|
#'
|
|
#' See \code{\link{xgb.train}} for further details.
|
|
#' See also demo/ for walkthrough example in R.
|
|
#' @param data takes an \code{xgb.DMatrix}, \code{matrix}, or \code{dgCMatrix} as the input.
|
|
#' @param nrounds the max number of iterations
|
|
#' @param nfold the original dataset is randomly partitioned into \code{nfold} equal size subsamples.
|
|
#' @param label vector of response values. Should be provided only when data is an R-matrix.
|
|
#' @param missing is only used when input is a dense matrix. By default is set to NA, which means
|
|
#' that NA values should be considered as 'missing' by the algorithm.
|
|
#' Sometimes, 0 or other extreme value might be used to represent missing values.
|
|
#' @param prediction A logical value indicating whether to return the test fold predictions
|
|
#' from each CV model. This parameter engages the \code{\link{xgb.cb.cv.predict}} callback.
|
|
#' @param showsd \code{boolean}, whether to show standard deviation of cross validation
|
|
#' @param metrics, list of evaluation metrics to be used in cross validation,
|
|
#' when it is not specified, the evaluation metric is chosen according to objective function.
|
|
#' Possible options are:
|
|
#' \itemize{
|
|
#' \item \code{error} binary classification error rate
|
|
#' \item \code{rmse} Rooted mean square error
|
|
#' \item \code{logloss} negative log-likelihood function
|
|
#' \item \code{mae} Mean absolute error
|
|
#' \item \code{mape} Mean absolute percentage error
|
|
#' \item \code{auc} Area under curve
|
|
#' \item \code{aucpr} Area under PR curve
|
|
#' \item \code{merror} Exact matching error, used to evaluate multi-class classification
|
|
#' }
|
|
#' @param obj customized objective function. Returns gradient and second order
|
|
#' gradient with given prediction and dtrain.
|
|
#' @param feval customized evaluation function. Returns
|
|
#' \code{list(metric='metric-name', value='metric-value')} with given
|
|
#' prediction and dtrain.
|
|
#' @param stratified a \code{boolean} indicating whether sampling of folds should be stratified
|
|
#' by the values of outcome labels.
|
|
#' @param folds \code{list} provides a possibility to use a list of pre-defined CV folds
|
|
#' (each element must be a vector of test fold's indices). When folds are supplied,
|
|
#' the \code{nfold} and \code{stratified} parameters are ignored.
|
|
#' @param train_folds \code{list} list specifying which indicies to use for training. If \code{NULL}
|
|
#' (the default) all indices not specified in \code{folds} will be used for training.
|
|
#' @param verbose \code{boolean}, print the statistics during the process
|
|
#' @param print_every_n Print each n-th iteration evaluation messages when \code{verbose>0}.
|
|
#' Default is 1 which means all messages are printed. This parameter is passed to the
|
|
#' \code{\link{xgb.cb.print.evaluation}} callback.
|
|
#' @param early_stopping_rounds If \code{NULL}, the early stopping function is not triggered.
|
|
#' If set to an integer \code{k}, training with a validation set will stop if the performance
|
|
#' doesn't improve for \code{k} rounds.
|
|
#' Setting this parameter engages the \code{\link{xgb.cb.early.stop}} callback.
|
|
#' @param maximize If \code{feval} and \code{early_stopping_rounds} are set,
|
|
#' then this parameter must be set as well.
|
|
#' When it is \code{TRUE}, it means the larger the evaluation score the better.
|
|
#' This parameter is passed to the \code{\link{xgb.cb.early.stop}} callback.
|
|
#' @param callbacks a list of callback functions to perform various task during boosting.
|
|
#' See \code{\link{xgb.Callback}}. Some of the callbacks are automatically created depending on the
|
|
#' parameters' values. User can provide either existing or their own callback methods in order
|
|
#' to customize the training process.
|
|
#' @param ... other parameters to pass to \code{params}.
|
|
#'
|
|
#' @details
|
|
#' The original sample is randomly partitioned into \code{nfold} equal size subsamples.
|
|
#'
|
|
#' Of the \code{nfold} subsamples, a single subsample is retained as the validation data for testing the model,
|
|
#' and the remaining \code{nfold - 1} subsamples are used as training data.
|
|
#'
|
|
#' The cross-validation process is then repeated \code{nrounds} times, with each of the
|
|
#' \code{nfold} subsamples used exactly once as the validation data.
|
|
#'
|
|
#' All observations are used for both training and validation.
|
|
#'
|
|
#' Adapted from \url{https://en.wikipedia.org/wiki/Cross-validation_\%28statistics\%29}
|
|
#'
|
|
#' @return
|
|
#' An object of class \code{xgb.cv.synchronous} with the following elements:
|
|
#' \itemize{
|
|
#' \item \code{call} a function call.
|
|
#' \item \code{params} parameters that were passed to the xgboost library. Note that it does not
|
|
#' capture parameters changed by the \code{\link{xgb.cb.reset.parameters}} callback.
|
|
#' \item \code{evaluation_log} evaluation history stored as a \code{data.table} with the
|
|
#' first column corresponding to iteration number and the rest corresponding to the
|
|
#' CV-based evaluation means and standard deviations for the training and test CV-sets.
|
|
#' It is created by the \code{\link{xgb.cb.evaluation.log}} callback.
|
|
#' \item \code{niter} number of boosting iterations.
|
|
#' \item \code{nfeatures} number of features in training data.
|
|
#' \item \code{folds} the list of CV folds' indices - either those passed through the \code{folds}
|
|
#' parameter or randomly generated.
|
|
#' \item \code{best_iteration} iteration number with the best evaluation metric value
|
|
#' (only available with early stopping).
|
|
#' }
|
|
#'
|
|
#' Plus other potential elements that are the result of callbacks, such as a list `cv_predict` with
|
|
#' a sub-element `pred` when passing `prediction = TRUE`, which is added by the \link{xgb.cb.cv.predict}
|
|
#' callback (note that one can also pass it manually under `callbacks` with different settings,
|
|
#' such as saving also the models created during cross validation); or a list `early_stop` which
|
|
#' will contain elements such as `best_iteration` when using the early stopping callback (\link{xgb.cb.early.stop}).
|
|
#'
|
|
#' @examples
|
|
#' data(agaricus.train, package='xgboost')
|
|
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
|
|
#' cv <- xgb.cv(data = dtrain, nrounds = 3, nthread = 2, nfold = 5, metrics = list("rmse","auc"),
|
|
#' max_depth = 3, eta = 1, objective = "binary:logistic")
|
|
#' print(cv)
|
|
#' print(cv, verbose=TRUE)
|
|
#'
|
|
#' @export
|
|
xgb.cv <- function(params = list(), data, nrounds, nfold, label = NULL, missing = NA,
|
|
prediction = FALSE, showsd = TRUE, metrics = list(),
|
|
obj = NULL, feval = NULL, stratified = TRUE, folds = NULL, train_folds = NULL,
|
|
verbose = TRUE, print_every_n = 1L,
|
|
early_stopping_rounds = NULL, maximize = NULL, callbacks = list(), ...) {
|
|
|
|
check.deprecation(...)
|
|
if (inherits(data, "xgb.DMatrix") && .Call(XGCheckNullPtr_R, data)) {
|
|
stop("'data' is an invalid 'xgb.DMatrix' object. Must be constructed again.")
|
|
}
|
|
|
|
params <- check.booster.params(params, ...)
|
|
# TODO: should we deprecate the redundant 'metrics' parameter?
|
|
for (m in metrics)
|
|
params <- c(params, list("eval_metric" = m))
|
|
|
|
check.custom.obj()
|
|
check.custom.eval()
|
|
|
|
# Check the labels
|
|
if ((inherits(data, 'xgb.DMatrix') && !xgb.DMatrix.hasinfo(data, 'label')) ||
|
|
(!inherits(data, 'xgb.DMatrix') && is.null(label))) {
|
|
stop("Labels must be provided for CV either through xgb.DMatrix, or through 'label=' when 'data' is matrix")
|
|
} else if (inherits(data, 'xgb.DMatrix')) {
|
|
if (!is.null(label))
|
|
warning("xgb.cv: label will be ignored, since data is of type xgb.DMatrix")
|
|
cv_label <- getinfo(data, 'label')
|
|
} else {
|
|
cv_label <- label
|
|
}
|
|
|
|
# CV folds
|
|
if (!is.null(folds)) {
|
|
if (!is.list(folds) || length(folds) < 2)
|
|
stop("'folds' must be a list with 2 or more elements that are vectors of indices for each CV-fold")
|
|
nfold <- length(folds)
|
|
} else {
|
|
if (nfold <= 1)
|
|
stop("'nfold' must be > 1")
|
|
folds <- generate.cv.folds(nfold, nrow(data), stratified, cv_label, params)
|
|
}
|
|
|
|
# Callbacks
|
|
tmp <- .process.callbacks(callbacks, is_cv = TRUE)
|
|
callbacks <- tmp$callbacks
|
|
cb_names <- tmp$cb_names
|
|
rm(tmp)
|
|
|
|
# Early stopping callback
|
|
if (!is.null(early_stopping_rounds) && !("early_stop" %in% cb_names)) {
|
|
callbacks <- add.callback(
|
|
callbacks,
|
|
xgb.cb.early.stop(
|
|
early_stopping_rounds,
|
|
maximize = maximize,
|
|
verbose = verbose
|
|
),
|
|
as_first_elt = TRUE
|
|
)
|
|
}
|
|
# verbosity & evaluation printing callback:
|
|
params <- c(params, list(silent = 1))
|
|
print_every_n <- max(as.integer(print_every_n), 1L)
|
|
if (verbose && !("print_evaluation" %in% cb_names)) {
|
|
callbacks <- add.callback(callbacks, xgb.cb.print.evaluation(print_every_n, showsd = showsd))
|
|
}
|
|
# evaluation log callback: always is on in CV
|
|
if (!("evaluation_log" %in% cb_names)) {
|
|
callbacks <- add.callback(callbacks, xgb.cb.evaluation.log())
|
|
}
|
|
# CV-predictions callback
|
|
if (prediction && !("cv_predict" %in% cb_names)) {
|
|
callbacks <- add.callback(callbacks, xgb.cb.cv.predict(save_models = FALSE))
|
|
}
|
|
|
|
# create the booster-folds
|
|
# train_folds
|
|
dall <- xgb.get.DMatrix(
|
|
data = data,
|
|
label = label,
|
|
missing = missing,
|
|
weight = NULL,
|
|
nthread = params$nthread
|
|
)
|
|
bst_folds <- lapply(seq_along(folds), function(k) {
|
|
dtest <- xgb.slice.DMatrix(dall, folds[[k]])
|
|
# code originally contributed by @RolandASc on stackoverflow
|
|
if (is.null(train_folds))
|
|
dtrain <- xgb.slice.DMatrix(dall, unlist(folds[-k]))
|
|
else
|
|
dtrain <- xgb.slice.DMatrix(dall, train_folds[[k]])
|
|
bst <- xgb.Booster(
|
|
params = params,
|
|
cachelist = list(dtrain, dtest),
|
|
modelfile = NULL
|
|
)
|
|
bst <- bst$bst
|
|
list(dtrain = dtrain, bst = bst, evals = list(train = dtrain, test = dtest), index = folds[[k]])
|
|
})
|
|
|
|
# extract parameters that can affect the relationship b/w #trees and #iterations
|
|
num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1) # nolint
|
|
|
|
# those are fixed for CV (no training continuation)
|
|
begin_iteration <- 1
|
|
end_iteration <- nrounds
|
|
|
|
.execute.cb.before.training(
|
|
callbacks,
|
|
bst_folds,
|
|
dall,
|
|
NULL,
|
|
begin_iteration,
|
|
end_iteration
|
|
)
|
|
|
|
# synchronous CV boosting: run CV folds' models within each iteration
|
|
for (iteration in begin_iteration:end_iteration) {
|
|
|
|
.execute.cb.before.iter(
|
|
callbacks,
|
|
bst_folds,
|
|
dall,
|
|
NULL,
|
|
iteration
|
|
)
|
|
|
|
msg <- lapply(bst_folds, function(fd) {
|
|
xgb.iter.update(
|
|
bst = fd$bst,
|
|
dtrain = fd$dtrain,
|
|
iter = iteration - 1,
|
|
obj = obj
|
|
)
|
|
xgb.iter.eval(
|
|
bst = fd$bst,
|
|
evals = fd$evals,
|
|
iter = iteration - 1,
|
|
feval = feval
|
|
)
|
|
})
|
|
msg <- simplify2array(msg)
|
|
|
|
should_stop <- .execute.cb.after.iter(
|
|
callbacks,
|
|
bst_folds,
|
|
dall,
|
|
NULL,
|
|
iteration,
|
|
msg
|
|
)
|
|
|
|
if (should_stop) break
|
|
}
|
|
cb_outputs <- .execute.cb.after.training(
|
|
callbacks,
|
|
bst_folds,
|
|
dall,
|
|
NULL,
|
|
iteration,
|
|
msg
|
|
)
|
|
|
|
# the CV result
|
|
ret <- list(
|
|
call = match.call(),
|
|
params = params,
|
|
niter = iteration,
|
|
nfeatures = ncol(dall),
|
|
folds = folds
|
|
)
|
|
ret <- c(ret, cb_outputs)
|
|
|
|
class(ret) <- 'xgb.cv.synchronous'
|
|
return(invisible(ret))
|
|
}
|
|
|
|
|
|
|
|
#' Print xgb.cv result
|
|
#'
|
|
#' Prints formatted results of \code{xgb.cv}.
|
|
#'
|
|
#' @param x an \code{xgb.cv.synchronous} object
|
|
#' @param verbose whether to print detailed data
|
|
#' @param ... passed to \code{data.table.print}
|
|
#'
|
|
#' @details
|
|
#' When not verbose, it would only print the evaluation results,
|
|
#' including the best iteration (when available).
|
|
#'
|
|
#' @examples
|
|
#' data(agaricus.train, package='xgboost')
|
|
#' train <- agaricus.train
|
|
#' cv <- xgb.cv(data = train$data, label = train$label, nfold = 5, max_depth = 2,
|
|
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
|
#' print(cv)
|
|
#' print(cv, verbose=TRUE)
|
|
#'
|
|
#' @rdname print.xgb.cv
|
|
#' @method print xgb.cv.synchronous
|
|
#' @export
|
|
print.xgb.cv.synchronous <- function(x, verbose = FALSE, ...) {
|
|
cat('##### xgb.cv ', length(x$folds), '-folds\n', sep = '')
|
|
|
|
if (verbose) {
|
|
if (!is.null(x$call)) {
|
|
cat('call:\n ')
|
|
print(x$call)
|
|
}
|
|
if (!is.null(x$params)) {
|
|
cat('params (as set within xgb.cv):\n')
|
|
cat(' ',
|
|
paste(names(x$params),
|
|
paste0('"', unlist(x$params), '"'),
|
|
sep = ' = ', collapse = ', '), '\n', sep = '')
|
|
}
|
|
|
|
for (n in c('niter', 'best_iteration')) {
|
|
if (is.null(x$early_stop[[n]]))
|
|
next
|
|
cat(n, ': ', x$early_stop[[n]], '\n', sep = '')
|
|
}
|
|
|
|
if (!is.null(x$cv_predict$pred)) {
|
|
cat('pred:\n')
|
|
str(x$cv_predict$pred)
|
|
}
|
|
}
|
|
|
|
if (verbose)
|
|
cat('evaluation_log:\n')
|
|
print(x$evaluation_log, row.names = FALSE, ...)
|
|
|
|
if (!is.null(x$early_stop$best_iteration)) {
|
|
cat('Best iteration:\n')
|
|
print(x$evaluation_log[x$early_stop$best_iteration], row.names = FALSE, ...)
|
|
}
|
|
invisible(x)
|
|
}
|