xgboost/include/xgboost/tree_model.h
Jiaming Yuan ae536756ae
Add Model and Configurable interface. (#4945)
* Apply Configurable to objective functions.
* Apply Model to Learner and Regtree, gbm.
* Add Load/SaveConfig to objs.
* Refactor obj tests to use smart pointer.
* Dummy methods for Save/Load Model.
2019-10-18 01:56:02 -04:00

593 lines
19 KiB
C++

/*!
* Copyright 2014-2019 by Contributors
* \file tree_model.h
* \brief model structure for tree
* \author Tianqi Chen
*/
#ifndef XGBOOST_TREE_MODEL_H_
#define XGBOOST_TREE_MODEL_H_
#include <dmlc/io.h>
#include <dmlc/parameter.h>
#include <xgboost/base.h>
#include <xgboost/data.h>
#include <xgboost/logging.h>
#include <xgboost/feature_map.h>
#include <xgboost/model.h>
#include <limits>
#include <vector>
#include <string>
#include <cstring>
#include <algorithm>
#include <tuple>
namespace xgboost {
struct PathElement; // forward declaration
/*! \brief meta parameters of the tree */
struct TreeParam : public dmlc::Parameter<TreeParam> {
/*! \brief number of start root */
int num_roots;
/*! \brief total number of nodes */
int num_nodes;
/*!\brief number of deleted nodes */
int num_deleted;
/*! \brief maximum depth, this is a statistics of the tree */
int max_depth;
/*! \brief number of features used for tree construction */
int num_feature;
/*!
* \brief leaf vector size, used for vector tree
* used to store more than one dimensional information in tree
*/
int size_leaf_vector;
/*! \brief reserved part, make sure alignment works for 64bit */
int reserved[31];
/*! \brief constructor */
TreeParam() {
// assert compact alignment
static_assert(sizeof(TreeParam) == (31 + 6) * sizeof(int),
"TreeParam: 64 bit align");
std::memset(this, 0, sizeof(TreeParam));
num_nodes = num_roots = 1;
}
// declare the parameters
DMLC_DECLARE_PARAMETER(TreeParam) {
// only declare the parameters that can be set by the user.
// other arguments are set by the algorithm.
DMLC_DECLARE_FIELD(num_roots).set_lower_bound(1).set_default(1)
.describe("Number of start root of trees.");
DMLC_DECLARE_FIELD(num_feature)
.describe("Number of features used in tree construction.");
DMLC_DECLARE_FIELD(size_leaf_vector).set_lower_bound(0).set_default(0)
.describe("Size of leaf vector, reserved for vector tree");
}
bool operator==(const TreeParam& b) const {
return num_roots == b.num_roots && num_nodes == b.num_nodes &&
num_deleted == b.num_deleted && max_depth == b.max_depth &&
num_feature == b.num_feature &&
size_leaf_vector == b.size_leaf_vector;
}
};
/*! \brief node statistics used in regression tree */
struct RTreeNodeStat {
/*! \brief loss change caused by current split */
bst_float loss_chg;
/*! \brief sum of hessian values, used to measure coverage of data */
bst_float sum_hess;
/*! \brief weight of current node */
bst_float base_weight;
/*! \brief number of child that is leaf node known up to now */
int leaf_child_cnt;
bool operator==(const RTreeNodeStat& b) const {
return loss_chg == b.loss_chg && sum_hess == b.sum_hess &&
base_weight == b.base_weight && leaf_child_cnt == b.leaf_child_cnt;
}
};
/*!
* \brief define regression tree to be the most common tree model.
* This is the data structure used in xgboost's major tree models.
*/
class RegTree : public Model {
public:
/*! \brief auxiliary statistics of node to help tree building */
using SplitCondT = bst_float;
/*! \brief tree node */
class Node {
public:
Node() {
// assert compact alignment
static_assert(sizeof(Node) == 4 * sizeof(int) + sizeof(Info),
"Node: 64 bit align");
}
/*! \brief index of left child */
XGBOOST_DEVICE int LeftChild() const {
return this->cleft_;
}
/*! \brief index of right child */
XGBOOST_DEVICE int RightChild() const {
return this->cright_;
}
/*! \brief index of default child when feature is missing */
XGBOOST_DEVICE int DefaultChild() const {
return this->DefaultLeft() ? this->LeftChild() : this->RightChild();
}
/*! \brief feature index of split condition */
XGBOOST_DEVICE unsigned SplitIndex() const {
return sindex_ & ((1U << 31) - 1U);
}
/*! \brief when feature is unknown, whether goes to left child */
XGBOOST_DEVICE bool DefaultLeft() const {
return (sindex_ >> 31) != 0;
}
/*! \brief whether current node is leaf node */
XGBOOST_DEVICE bool IsLeaf() const {
return cleft_ == -1;
}
/*! \return get leaf value of leaf node */
XGBOOST_DEVICE bst_float LeafValue() const {
return (this->info_).leaf_value;
}
/*! \return get split condition of the node */
XGBOOST_DEVICE SplitCondT SplitCond() const {
return (this->info_).split_cond;
}
/*! \brief get parent of the node */
XGBOOST_DEVICE int Parent() const {
return parent_ & ((1U << 31) - 1);
}
/*! \brief whether current node is left child */
XGBOOST_DEVICE bool IsLeftChild() const {
return (parent_ & (1U << 31)) != 0;
}
/*! \brief whether this node is deleted */
XGBOOST_DEVICE bool IsDeleted() const {
return sindex_ == std::numeric_limits<unsigned>::max();
}
/*! \brief whether current node is root */
XGBOOST_DEVICE bool IsRoot() const { return parent_ == -1; }
/*!
* \brief set the left child
* \param nid node id to right child
*/
XGBOOST_DEVICE void SetLeftChild(int nid) {
this->cleft_ = nid;
}
/*!
* \brief set the right child
* \param nid node id to right child
*/
XGBOOST_DEVICE void SetRightChild(int nid) {
this->cright_ = nid;
}
/*!
* \brief set split condition of current node
* \param split_index feature index to split
* \param split_cond split condition
* \param default_left the default direction when feature is unknown
*/
XGBOOST_DEVICE void SetSplit(unsigned split_index, SplitCondT split_cond,
bool default_left = false) {
if (default_left) split_index |= (1U << 31);
this->sindex_ = split_index;
(this->info_).split_cond = split_cond;
}
/*!
* \brief set the leaf value of the node
* \param value leaf value
* \param right right index, could be used to store
* additional information
*/
XGBOOST_DEVICE void SetLeaf(bst_float value, int right = -1) {
(this->info_).leaf_value = value;
this->cleft_ = -1;
this->cright_ = right;
}
/*! \brief mark that this node is deleted */
XGBOOST_DEVICE void MarkDelete() {
this->sindex_ = std::numeric_limits<unsigned>::max();
}
/*! \brief Reuse this deleted node. */
XGBOOST_DEVICE void Reuse() {
this->sindex_ = 0;
}
// set parent
XGBOOST_DEVICE void SetParent(int pidx, bool is_left_child = true) {
if (is_left_child) pidx |= (1U << 31);
this->parent_ = pidx;
}
bool operator==(const Node& b) const {
return parent_ == b.parent_ && cleft_ == b.cleft_ &&
cright_ == b.cright_ && sindex_ == b.sindex_ &&
info_.leaf_value == b.info_.leaf_value;
}
private:
/*!
* \brief in leaf node, we have weights, in non-leaf nodes,
* we have split condition
*/
union Info{
bst_float leaf_value;
SplitCondT split_cond;
};
// pointer to parent, highest bit is used to
// indicate whether it's a left child or not
int parent_;
// pointer to left, right
int cleft_, cright_;
// split feature index, left split or right split depends on the highest bit
unsigned sindex_{0};
// extra info
Info info_;
};
/*!
* \brief change a non leaf node to a leaf node, delete its children
* \param rid node id of the node
* \param value new leaf value
*/
void ChangeToLeaf(int rid, bst_float value) {
CHECK(nodes_[nodes_[rid].LeftChild() ].IsLeaf());
CHECK(nodes_[nodes_[rid].RightChild()].IsLeaf());
this->DeleteNode(nodes_[rid].LeftChild());
this->DeleteNode(nodes_[rid].RightChild());
nodes_[rid].SetLeaf(value);
}
/*!
* \brief collapse a non leaf node to a leaf node, delete its children
* \param rid node id of the node
* \param value new leaf value
*/
void CollapseToLeaf(int rid, bst_float value) {
if (nodes_[rid].IsLeaf()) return;
if (!nodes_[nodes_[rid].LeftChild() ].IsLeaf()) {
CollapseToLeaf(nodes_[rid].LeftChild(), 0.0f);
}
if (!nodes_[nodes_[rid].RightChild() ].IsLeaf()) {
CollapseToLeaf(nodes_[rid].RightChild(), 0.0f);
}
this->ChangeToLeaf(rid, value);
}
/*! \brief model parameter */
TreeParam param;
/*! \brief constructor */
RegTree() {
param.num_nodes = 1;
param.num_roots = 1;
param.num_deleted = 0;
nodes_.resize(param.num_nodes);
stats_.resize(param.num_nodes);
for (int i = 0; i < param.num_nodes; i ++) {
nodes_[i].SetLeaf(0.0f);
nodes_[i].SetParent(-1);
}
}
/*! \brief get node given nid */
Node& operator[](int nid) {
return nodes_[nid];
}
/*! \brief get node given nid */
const Node& operator[](int nid) const {
return nodes_[nid];
}
/*! \brief get const reference to nodes */
const std::vector<Node>& GetNodes() const { return nodes_; }
/*! \brief get node statistics given nid */
RTreeNodeStat& Stat(int nid) {
return stats_[nid];
}
/*! \brief get node statistics given nid */
const RTreeNodeStat& Stat(int nid) const {
return stats_[nid];
}
/*!
* \brief load model from stream
* \param fi input stream
*/
void LoadModel(dmlc::Stream* fi) override;
/*!
* \brief save model to stream
* \param fo output stream
*/
void SaveModel(dmlc::Stream* fo) const override;
bool operator==(const RegTree& b) const {
return nodes_ == b.nodes_ && stats_ == b.stats_ &&
deleted_nodes_ == b.deleted_nodes_ && param == b.param;
}
/**
* \brief Expands a leaf node into two additional leaf nodes.
*
* \param nid The node index to expand.
* \param split_index Feature index of the split.
* \param split_value The split condition.
* \param default_left True to default left.
* \param base_weight The base weight, before learning rate.
* \param left_leaf_weight The left leaf weight for prediction, modified by learning rate.
* \param right_leaf_weight The right leaf weight for prediction, modified by learning rate.
* \param loss_change The loss change.
* \param sum_hess The sum hess.
*/
void ExpandNode(int nid, unsigned split_index, bst_float split_value,
bool default_left, bst_float base_weight,
bst_float left_leaf_weight, bst_float right_leaf_weight,
bst_float loss_change, float sum_hess) {
int pleft = this->AllocNode();
int pright = this->AllocNode();
auto &node = nodes_[nid];
CHECK(node.IsLeaf());
node.SetLeftChild(pleft);
node.SetRightChild(pright);
nodes_[node.LeftChild()].SetParent(nid, true);
nodes_[node.RightChild()].SetParent(nid, false);
node.SetSplit(split_index, split_value,
default_left);
// mark right child as 0, to indicate fresh leaf
nodes_[pleft].SetLeaf(left_leaf_weight, 0);
nodes_[pright].SetLeaf(right_leaf_weight, 0);
this->Stat(nid).loss_chg = loss_change;
this->Stat(nid).base_weight = base_weight;
this->Stat(nid).sum_hess = sum_hess;
}
/*!
* \brief get current depth
* \param nid node id
*/
int GetDepth(int nid) const {
int depth = 0;
while (!nodes_[nid].IsRoot()) {
++depth;
nid = nodes_[nid].Parent();
}
return depth;
}
/*!
* \brief get maximum depth
* \param nid node id
*/
int MaxDepth(int nid) const {
if (nodes_[nid].IsLeaf()) return 0;
return std::max(MaxDepth(nodes_[nid].LeftChild())+1,
MaxDepth(nodes_[nid].RightChild())+1);
}
/*!
* \brief get maximum depth
*/
int MaxDepth() {
int maxd = 0;
for (int i = 0; i < param.num_roots; ++i) {
maxd = std::max(maxd, MaxDepth(i));
}
return maxd;
}
/*! \brief number of extra nodes besides the root */
int NumExtraNodes() const {
return param.num_nodes - param.num_roots - param.num_deleted;
}
/*!
* \brief dense feature vector that can be taken by RegTree
* and can be construct from sparse feature vector.
*/
struct FVec {
/*!
* \brief initialize the vector with size vector
* \param size The size of the feature vector.
*/
void Init(size_t size);
/*!
* \brief fill the vector with sparse vector
* \param inst The sparse instance to fill.
*/
void Fill(const SparsePage::Inst& inst);
/*!
* \brief drop the trace after fill, must be called after fill.
* \param inst The sparse instance to drop.
*/
void Drop(const SparsePage::Inst& inst);
/*!
* \brief returns the size of the feature vector
* \return the size of the feature vector
*/
size_t Size() const;
/*!
* \brief get ith value
* \param i feature index.
* \return the i-th feature value
*/
bst_float Fvalue(size_t i) const;
/*!
* \brief check whether i-th entry is missing
* \param i feature index.
* \return whether i-th value is missing.
*/
bool IsMissing(size_t i) const;
private:
/*!
* \brief a union value of value and flag
* when flag == -1, this indicate the value is missing
*/
union Entry {
bst_float fvalue;
int flag;
};
std::vector<Entry> data_;
};
/*!
* \brief get the leaf index
* \param feat dense feature vector, if the feature is missing the field is set to NaN
* \param root_id starting root index of the instance
* \return the leaf index of the given feature
*/
int GetLeafIndex(const FVec& feat, unsigned root_id = 0) const;
/*!
* \brief calculate the feature contributions (https://arxiv.org/abs/1706.06060) for the tree
* \param feat dense feature vector, if the feature is missing the field is set to NaN
* \param root_id starting root index of the instance
* \param out_contribs output vector to hold the contributions
* \param condition fix one feature to either off (-1) on (1) or not fixed (0 default)
* \param condition_feature the index of the feature to fix
*/
void CalculateContributions(const RegTree::FVec& feat, unsigned root_id,
bst_float* out_contribs, int condition = 0,
unsigned condition_feature = 0) const;
/*!
* \brief Recursive function that computes the feature attributions for a single tree.
* \param feat dense feature vector, if the feature is missing the field is set to NaN
* \param phi dense output vector of feature attributions
* \param node_index the index of the current node in the tree
* \param unique_depth how many unique features are above the current node in the tree
* \param parent_unique_path a vector of statistics about our current path through the tree
* \param parent_zero_fraction what fraction of the parent path weight is coming as 0 (integrated)
* \param parent_one_fraction what fraction of the parent path weight is coming as 1 (fixed)
* \param parent_feature_index what feature the parent node used to split
* \param condition fix one feature to either off (-1) on (1) or not fixed (0 default)
* \param condition_feature the index of the feature to fix
* \param condition_fraction what fraction of the current weight matches our conditioning feature
*/
void TreeShap(const RegTree::FVec& feat, bst_float* phi, unsigned node_index,
unsigned unique_depth, PathElement* parent_unique_path,
bst_float parent_zero_fraction, bst_float parent_one_fraction,
int parent_feature_index, int condition,
unsigned condition_feature, bst_float condition_fraction) const;
/*!
* \brief calculate the approximate feature contributions for the given root
* \param feat dense feature vector, if the feature is missing the field is set to NaN
* \param root_id starting root index of the instance
* \param out_contribs output vector to hold the contributions
*/
void CalculateContributionsApprox(const RegTree::FVec& feat, unsigned root_id,
bst_float* out_contribs) const;
/*!
* \brief get next position of the tree given current pid
* \param pid Current node id.
* \param fvalue feature value if not missing.
* \param is_unknown Whether current required feature is missing.
*/
inline int GetNext(int pid, bst_float fvalue, bool is_unknown) const;
/*!
* \brief dump the model in the requested format as a text string
* \param fmap feature map that may help give interpretations of feature
* \param with_stats whether dump out statistics as well
* \param format the format to dump the model in
* \return the string of dumped model
*/
std::string DumpModel(const FeatureMap& fmap,
bool with_stats,
std::string format) const;
/*!
* \brief calculate the mean value for each node, required for feature contributions
*/
void FillNodeMeanValues();
private:
// vector of nodes
std::vector<Node> nodes_;
// free node space, used during training process
std::vector<int> deleted_nodes_;
// stats of nodes
std::vector<RTreeNodeStat> stats_;
std::vector<bst_float> node_mean_values_;
// allocate a new node,
// !!!!!! NOTE: may cause BUG here, nodes.resize
int AllocNode() {
if (param.num_deleted != 0) {
int nid = deleted_nodes_.back();
deleted_nodes_.pop_back();
nodes_[nid].Reuse();
--param.num_deleted;
return nid;
}
int nd = param.num_nodes++;
CHECK_LT(param.num_nodes, std::numeric_limits<int>::max())
<< "number of nodes in the tree exceed 2^31";
nodes_.resize(param.num_nodes);
stats_.resize(param.num_nodes);
return nd;
}
// delete a tree node, keep the parent field to allow trace back
void DeleteNode(int nid) {
CHECK_GE(nid, param.num_roots);
deleted_nodes_.push_back(nid);
nodes_[nid].MarkDelete();
++param.num_deleted;
}
bst_float FillNodeMeanValue(int nid);
};
inline void RegTree::FVec::Init(size_t size) {
Entry e; e.flag = -1;
data_.resize(size);
std::fill(data_.begin(), data_.end(), e);
}
inline void RegTree::FVec::Fill(const SparsePage::Inst& inst) {
for (bst_uint i = 0; i < inst.size(); ++i) {
if (inst[i].index >= data_.size()) continue;
data_[inst[i].index].fvalue = inst[i].fvalue;
}
}
inline void RegTree::FVec::Drop(const SparsePage::Inst& inst) {
for (bst_uint i = 0; i < inst.size(); ++i) {
if (inst[i].index >= data_.size()) continue;
data_[inst[i].index].flag = -1;
}
}
inline size_t RegTree::FVec::Size() const {
return data_.size();
}
inline bst_float RegTree::FVec::Fvalue(size_t i) const {
return data_[i].fvalue;
}
inline bool RegTree::FVec::IsMissing(size_t i) const {
return data_[i].flag == -1;
}
inline int RegTree::GetLeafIndex(const RegTree::FVec& feat,
unsigned root_id) const {
auto pid = static_cast<int>(root_id);
while (!(*this)[pid].IsLeaf()) {
unsigned split_index = (*this)[pid].SplitIndex();
pid = this->GetNext(pid, feat.Fvalue(split_index), feat.IsMissing(split_index));
}
return pid;
}
/*! \brief get next position of the tree given current pid */
inline int RegTree::GetNext(int pid, bst_float fvalue, bool is_unknown) const {
bst_float split_value = (*this)[pid].SplitCond();
if (is_unknown) {
return (*this)[pid].DefaultChild();
} else {
if (fvalue < split_value) {
return (*this)[pid].LeftChild();
} else {
return (*this)[pid].RightChild();
}
}
}
} // namespace xgboost
#endif // XGBOOST_TREE_MODEL_H_