xgboost/tests/python/test_updaters.py
ShvetsKS cd3d14ad0e
Add float32 histogram (#5624)
* new single_precision_histogram param was added.

Co-authored-by: SHVETS, KIRILL <kirill.shvets@intel.com>
Co-authored-by: fis <jm.yuan@outlook.com>
2020-06-03 11:24:53 +08:00

102 lines
4.0 KiB
Python

import testing as tm
import unittest
import pytest
import xgboost as xgb
import numpy as np
try:
from regression_test_utilities import run_suite, parameter_combinations, \
assert_results_non_increasing
except ImportError:
None
class TestUpdaters(unittest.TestCase):
@pytest.mark.skipif(**tm.no_sklearn())
def test_histmaker(self):
variable_param = {'updater': ['grow_histmaker'], 'max_depth': [2, 8]}
for param in parameter_combinations(variable_param):
result = run_suite(param)
assert_results_non_increasing(result, 1e-2)
@pytest.mark.skipif(**tm.no_sklearn())
def test_colmaker(self):
variable_param = {'updater': ['grow_colmaker'], 'max_depth': [2, 8]}
for param in parameter_combinations(variable_param):
result = run_suite(param)
assert_results_non_increasing(result, 1e-2)
@pytest.mark.skipif(**tm.no_sklearn())
def test_pruner(self):
import sklearn
params = {'tree_method': 'exact'}
cancer = sklearn.datasets.load_breast_cancer()
X = cancer['data']
y = cancer["target"]
dtrain = xgb.DMatrix(X, y)
booster = xgb.train(params, dtrain=dtrain, num_boost_round=10)
grown = str(booster.get_dump())
params = {'updater': 'prune', 'process_type': 'update', 'gamma': '0.2'}
booster = xgb.train(params, dtrain=dtrain, num_boost_round=10,
xgb_model=booster)
after_prune = str(booster.get_dump())
assert grown != after_prune
booster = xgb.train(params, dtrain=dtrain, num_boost_round=10,
xgb_model=booster)
second_prune = str(booster.get_dump())
# Second prune should not change the tree
assert after_prune == second_prune
@pytest.mark.skipif(**tm.no_sklearn())
def test_fast_histmaker(self):
variable_param = {'tree_method': ['hist'],
'max_depth': [2, 8],
'max_bin': [2, 256],
'grow_policy': ['depthwise', 'lossguide'],
'max_leaves': [64, 0],
'verbosity': [0],
'single_precision_histogram': [True, False]}
for param in parameter_combinations(variable_param):
result = run_suite(param)
assert_results_non_increasing(result, 1e-2)
# hist must be same as exact on all-categorial data
dpath = 'demo/data/'
ag_dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
ag_dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
ag_param = {'max_depth': 2,
'tree_method': 'hist',
'eta': 1,
'verbosity': 0,
'objective': 'binary:logistic',
'eval_metric': 'auc'}
hist_res = {}
exact_res = {}
xgb.train(ag_param, ag_dtrain, 10,
[(ag_dtrain, 'train'), (ag_dtest, 'test')],
evals_result=hist_res)
ag_param["tree_method"] = "exact"
xgb.train(ag_param, ag_dtrain, 10,
[(ag_dtrain, 'train'), (ag_dtest, 'test')],
evals_result=exact_res)
assert hist_res['train']['auc'] == exact_res['train']['auc']
assert hist_res['test']['auc'] == exact_res['test']['auc']
@pytest.mark.skipif(**tm.no_sklearn())
def test_fast_histmaker_degenerate_case(self):
# Test a degenerate case where the quantile sketcher won't return any
# quantile points for a particular feature (the second feature in
# this example). Source: https://github.com/dmlc/xgboost/issues/2943
nan = np.nan
param = {'missing': nan, 'tree_method': 'hist'}
model = xgb.XGBRegressor(**param)
X = np.array([[6.18827160e+05, 1.73000000e+02], [6.37345679e+05, nan],
[6.38888889e+05, nan], [6.28086420e+05, nan]])
y = [1000000., 0., 0., 500000.]
w = [0, 0, 1, 0]
model.fit(X, y, sample_weight=w)