xgboost/plugin/sycl/predictor/predictor.cc
Jiaming Yuan a5a58102e5
Revamp the rabit implementation. (#10112)
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
2024-05-20 11:56:23 +08:00

355 lines
13 KiB
C++
Executable File

/*!
* Copyright by Contributors 2017-2023
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#pragma GCC diagnostic ignored "-W#pragma-messages"
#pragma GCC diagnostic pop
#include <cstddef>
#include <limits>
#include <mutex>
#include <CL/sycl.hpp>
#include "../data.h"
#include "dmlc/registry.h"
#include "xgboost/tree_model.h"
#include "xgboost/predictor.h"
#include "xgboost/tree_updater.h"
#include "../../../src/common/timer.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#include "../../src/data/adapter.h"
#pragma GCC diagnostic pop
#include "../../src/common/math.h"
#include "../../src/gbm/gbtree_model.h"
#include "../device_manager.h"
namespace xgboost {
namespace sycl {
namespace predictor {
DMLC_REGISTRY_FILE_TAG(predictor_sycl);
union NodeValue {
float leaf_weight;
float fvalue;
};
class Node {
int fidx;
int left_child_idx;
int right_child_idx;
NodeValue val;
public:
explicit Node(const RegTree::Node& n) {
left_child_idx = n.LeftChild();
right_child_idx = n.RightChild();
fidx = n.SplitIndex();
if (n.DefaultLeft()) {
fidx |= (1U << 31);
}
if (n.IsLeaf()) {
val.leaf_weight = n.LeafValue();
} else {
val.fvalue = n.SplitCond();
}
}
int LeftChildIdx() const {return left_child_idx; }
int RightChildIdx() const {return right_child_idx; }
bool IsLeaf() const { return left_child_idx == -1; }
int GetFidx() const { return fidx & ((1U << 31) - 1U); }
bool MissingLeft() const { return (fidx >> 31) != 0; }
int MissingIdx() const {
if (MissingLeft()) {
return left_child_idx;
} else {
return right_child_idx;
}
}
float GetFvalue() const { return val.fvalue; }
float GetWeight() const { return val.leaf_weight; }
};
class DeviceModel {
public:
USMVector<Node> nodes;
USMVector<size_t> first_node_position;
USMVector<int> tree_group;
size_t tree_beg;
size_t tree_end;
int num_group;
void Init(::sycl::queue* qu, const gbm::GBTreeModel& model, size_t tree_begin, size_t tree_end) {
int n_nodes = 0;
first_node_position.Resize(qu, (tree_end - tree_begin) + 1);
first_node_position[0] = n_nodes;
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
if (model.trees[tree_idx]->HasCategoricalSplit()) {
LOG(FATAL) << "Categorical features are not yet supported by sycl";
}
n_nodes += model.trees[tree_idx]->GetNodes().size();
first_node_position[tree_idx - tree_begin + 1] = n_nodes;
}
nodes.Resize(qu, n_nodes);
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
auto& src_nodes = model.trees[tree_idx]->GetNodes();
size_t n_nodes_shift = first_node_position[tree_idx - tree_begin];
for (size_t node_idx = 0; node_idx < src_nodes.size(); node_idx++) {
nodes[node_idx + n_nodes_shift] = static_cast<Node>(src_nodes[node_idx]);
}
}
tree_group.Resize(qu, model.tree_info.size());
for (size_t tree_idx = 0; tree_idx < model.tree_info.size(); tree_idx++)
tree_group[tree_idx] = model.tree_info[tree_idx];
tree_beg = tree_begin;
tree_end = tree_end;
num_group = model.learner_model_param->num_output_group;
}
};
float GetLeafWeight(const Node* nodes, const float* fval_buff, const uint8_t* miss_buff) {
const Node* node = nodes;
while (!node->IsLeaf()) {
if (miss_buff[node->GetFidx()] == 1) {
node = nodes + node->MissingIdx();
} else {
const float fvalue = fval_buff[node->GetFidx()];
if (fvalue < node->GetFvalue()) {
node = nodes + node->LeftChildIdx();
} else {
node = nodes + node->RightChildIdx();
}
}
}
return node->GetWeight();
}
float GetLeafWeight(const Node* nodes, const float* fval_buff) {
const Node* node = nodes;
while (!node->IsLeaf()) {
const float fvalue = fval_buff[node->GetFidx()];
if (fvalue < node->GetFvalue()) {
node = nodes + node->LeftChildIdx();
} else {
node = nodes + node->RightChildIdx();
}
}
return node->GetWeight();
}
template <bool any_missing>
void DevicePredictInternal(::sycl::queue* qu,
const sycl::DeviceMatrix& dmat,
HostDeviceVector<float>* out_preds,
const gbm::GBTreeModel& model,
size_t tree_begin,
size_t tree_end) {
if (tree_end - tree_begin == 0) return;
if (out_preds->HostVector().size() == 0) return;
DeviceModel device_model;
device_model.Init(qu, model, tree_begin, tree_end);
const Node* nodes = device_model.nodes.DataConst();
const size_t* first_node_position = device_model.first_node_position.DataConst();
const int* tree_group = device_model.tree_group.DataConst();
const size_t* row_ptr = dmat.row_ptr.DataConst();
const Entry* data = dmat.data.DataConst();
int num_features = dmat.p_mat->Info().num_col_;
int num_rows = dmat.row_ptr.Size() - 1;
int num_group = model.learner_model_param->num_output_group;
USMVector<float, MemoryType::on_device> fval_buff(qu, num_features * num_rows);
USMVector<uint8_t, MemoryType::on_device> miss_buff;
auto* fval_buff_ptr = fval_buff.Data();
std::vector<::sycl::event> events(1);
if constexpr (any_missing) {
miss_buff.Resize(qu, num_features * num_rows, 1, &events[0]);
}
auto* miss_buff_ptr = miss_buff.Data();
auto& out_preds_vec = out_preds->HostVector();
::sycl::buffer<float, 1> out_preds_buf(out_preds_vec.data(), out_preds_vec.size());
events[0] = qu->submit([&](::sycl::handler& cgh) {
cgh.depends_on(events[0]);
auto out_predictions = out_preds_buf.template get_access<::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<>(::sycl::range<1>(num_rows), [=](::sycl::id<1> pid) {
int row_idx = pid[0];
auto* fval_buff_row_ptr = fval_buff_ptr + num_features * row_idx;
auto* miss_buff_row_ptr = miss_buff_ptr + num_features * row_idx;
const Entry* first_entry = data + row_ptr[row_idx];
const Entry* last_entry = data + row_ptr[row_idx + 1];
for (const Entry* entry = first_entry; entry < last_entry; entry += 1) {
fval_buff_row_ptr[entry->index] = entry->fvalue;
if constexpr (any_missing) {
miss_buff_row_ptr[entry->index] = 0;
}
}
if (num_group == 1) {
float sum = 0.0;
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
const Node* first_node = nodes + first_node_position[tree_idx - tree_begin];
if constexpr (any_missing) {
sum += GetLeafWeight(first_node, fval_buff_row_ptr, miss_buff_row_ptr);
} else {
sum += GetLeafWeight(first_node, fval_buff_row_ptr);
}
}
out_predictions[row_idx] += sum;
} else {
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
const Node* first_node = nodes + first_node_position[tree_idx - tree_begin];
int out_prediction_idx = row_idx * num_group + tree_group[tree_idx];
if constexpr (any_missing) {
out_predictions[out_prediction_idx] +=
GetLeafWeight(first_node, fval_buff_row_ptr, miss_buff_row_ptr);
} else {
out_predictions[out_prediction_idx] +=
GetLeafWeight(first_node, fval_buff_row_ptr);
}
}
}
});
});
qu->wait();
}
class Predictor : public xgboost::Predictor {
public:
void InitOutPredictions(const MetaInfo& info,
HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model) const override {
CHECK_NE(model.learner_model_param->num_output_group, 0);
size_t n = model.learner_model_param->num_output_group * info.num_row_;
const auto& base_margin = info.base_margin_.Data()->HostVector();
out_preds->Resize(n);
std::vector<bst_float>& out_preds_h = out_preds->HostVector();
if (base_margin.size() == n) {
CHECK_EQ(out_preds->Size(), n);
std::copy(base_margin.begin(), base_margin.end(), out_preds_h.begin());
} else {
auto base_score = model.learner_model_param->BaseScore(ctx_)(0);
if (!base_margin.empty()) {
std::ostringstream oss;
oss << "Ignoring the base margin, since it has incorrect length. "
<< "The base margin must be an array of length ";
if (model.learner_model_param->num_output_group > 1) {
oss << "[num_class] * [number of data points], i.e. "
<< model.learner_model_param->num_output_group << " * " << info.num_row_
<< " = " << n << ". ";
} else {
oss << "[number of data points], i.e. " << info.num_row_ << ". ";
}
oss << "Instead, all data points will use "
<< "base_score = " << base_score;
LOG(WARNING) << oss.str();
}
std::fill(out_preds_h.begin(), out_preds_h.end(), base_score);
}
}
explicit Predictor(Context const* context) :
xgboost::Predictor::Predictor{context},
cpu_predictor(xgboost::Predictor::Create("cpu_predictor", context)) {}
void PredictBatch(DMatrix *dmat, PredictionCacheEntry *predts,
const gbm::GBTreeModel &model, uint32_t tree_begin,
uint32_t tree_end = 0) const override {
::sycl::queue qu = device_manager.GetQueue(ctx_->Device());
// TODO(razdoburdin): remove temporary workaround after cache fix
sycl::DeviceMatrix device_matrix;
device_matrix.Init(qu, dmat);
auto* out_preds = &predts->predictions;
if (tree_end == 0) {
tree_end = model.trees.size();
}
if (tree_begin < tree_end) {
const bool any_missing = !(dmat->IsDense());
if (any_missing) {
DevicePredictInternal<true>(&qu, device_matrix, out_preds, model, tree_begin, tree_end);
} else {
DevicePredictInternal<false>(&qu, device_matrix, out_preds, model, tree_begin, tree_end);
}
}
}
bool InplacePredict(std::shared_ptr<DMatrix> p_m,
const gbm::GBTreeModel &model, float missing,
PredictionCacheEntry *out_preds, uint32_t tree_begin,
unsigned tree_end) const override {
LOG(WARNING) << "InplacePredict is not yet implemented for SYCL. CPU Predictor is used.";
return cpu_predictor->InplacePredict(p_m, model, missing, out_preds, tree_begin, tree_end);
}
void PredictInstance(const SparsePage::Inst& inst,
std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit,
bool is_column_split) const override {
LOG(WARNING) << "PredictInstance is not yet implemented for SYCL. CPU Predictor is used.";
cpu_predictor->PredictInstance(inst, out_preds, model, ntree_limit, is_column_split);
}
void PredictLeaf(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit) const override {
LOG(WARNING) << "PredictLeaf is not yet implemented for SYCL. CPU Predictor is used.";
cpu_predictor->PredictLeaf(p_fmat, out_preds, model, ntree_limit);
}
void PredictContribution(DMatrix* p_fmat, HostDeviceVector<float>* out_contribs,
const gbm::GBTreeModel& model, uint32_t ntree_limit,
const std::vector<bst_float>* tree_weights,
bool approximate, int condition,
unsigned condition_feature) const override {
LOG(WARNING) << "PredictContribution is not yet implemented for SYCL. CPU Predictor is used.";
cpu_predictor->PredictContribution(p_fmat, out_contribs, model, ntree_limit, tree_weights,
approximate, condition, condition_feature);
}
void PredictInteractionContributions(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, unsigned ntree_limit,
const std::vector<bst_float>* tree_weights,
bool approximate) const override {
LOG(WARNING) << "PredictInteractionContributions is not yet implemented for SYCL. "
<< "CPU Predictor is used.";
cpu_predictor->PredictInteractionContributions(p_fmat, out_contribs, model, ntree_limit,
tree_weights, approximate);
}
private:
DeviceManager device_manager;
std::unique_ptr<xgboost::Predictor> cpu_predictor;
};
XGBOOST_REGISTER_PREDICTOR(Predictor, "sycl_predictor")
.describe("Make predictions using SYCL.")
.set_body([](Context const* ctx) { return new Predictor(ctx); });
} // namespace predictor
} // namespace sycl
} // namespace xgboost