xgboost/tests/cpp/gbm/test_gbtree.cc
Jiaming Yuan ac457c56a2
Use `UpdateAllowUnknown' for non-model related parameter. (#4961)
* Use `UpdateAllowUnknown' for non-model related parameter.

Model parameter can not pack an additional boolean value due to binary IO
format.  This commit deals only with non-model related parameter configuration.

* Add tidy command line arg for use-dmlc-gtest.
2019-10-23 05:50:12 -04:00

113 lines
3.9 KiB
C++

#include <gtest/gtest.h>
#include <dmlc/filesystem.h>
#include <xgboost/generic_parameters.h>
#include "xgboost/learner.h"
#include "../helpers.h"
#include "../../../src/gbm/gbtree.h"
namespace xgboost {
TEST(GBTree, SelectTreeMethod) {
size_t constexpr kCols = 10;
GenericParameter generic_param;
generic_param.UpdateAllowUnknown(Args{});
std::unique_ptr<GradientBooster> p_gbm{
GradientBooster::Create("gbtree", &generic_param, {}, 0)};
auto& gbtree = dynamic_cast<gbm::GBTree&> (*p_gbm);
// Test if `tree_method` can be set
std::string n_feat = std::to_string(kCols);
Args args {{"tree_method", "approx"}, {"num_feature", n_feat}};
gbtree.Configure({args.cbegin(), args.cend()});
gbtree.Configure(args);
auto const& tparam = gbtree.GetTrainParam();
gbtree.Configure({{"tree_method", "approx"}, {"num_feature", n_feat}});
ASSERT_EQ(tparam.updater_seq, "grow_histmaker,prune");
gbtree.Configure({{"tree_method", "exact"}, {"num_feature", n_feat}});
ASSERT_EQ(tparam.updater_seq, "grow_colmaker,prune");
gbtree.Configure({{"tree_method", "hist"}, {"num_feature", n_feat}});
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
ASSERT_EQ(tparam.predictor, "cpu_predictor");
gbtree.Configure({{"booster", "dart"}, {"tree_method", "hist"},
{"num_feature", n_feat}});
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
ASSERT_EQ(tparam.predictor, "cpu_predictor");
#ifdef XGBOOST_USE_CUDA
generic_param.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
gbtree.Configure({{"tree_method", "gpu_hist"}, {"num_feature", n_feat}});
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
ASSERT_EQ(tparam.predictor, "gpu_predictor");
gbtree.Configure({{"booster", "dart"}, {"tree_method", "gpu_hist"},
{"num_feature", n_feat}});
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
ASSERT_EQ(tparam.predictor, "gpu_predictor");
#endif
}
#ifdef XGBOOST_USE_CUDA
TEST(GBTree, ChoosePredictor) {
size_t constexpr kNumRows = 17;
size_t constexpr kCols = 15;
auto pp_mat = CreateDMatrix(kNumRows, kCols, 0);
auto& p_mat = *pp_mat;
std::vector<bst_float> labels (kNumRows);
for (size_t i = 0; i < kNumRows; ++i) {
labels[i] = i % 2;
}
p_mat->Info().SetInfo("label", labels.data(), DataType::kFloat32, kNumRows);
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {p_mat};
std::string n_feat = std::to_string(kCols);
Args args {{"tree_method", "approx"}, {"num_feature", n_feat}};
GenericParameter generic_param;
generic_param.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
auto& data = (*(p_mat->GetBatches<SparsePage>().begin())).data;
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->SetParams(Args{{"tree_method", "gpu_hist"}});
for (size_t i = 0; i < 4; ++i) {
learner->UpdateOneIter(i, p_mat.get());
}
ASSERT_TRUE(data.HostCanWrite());
dmlc::TemporaryDirectory tempdir;
const std::string fname = tempdir.path + "/model_para.bst";
{
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
learner->Save(fo.get());
}
// a new learner
learner = std::unique_ptr<Learner>(Learner::Create(mat));
{
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(fname.c_str(), "r"));
learner->Load(fi.get());
}
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
for (size_t i = 0; i < 4; ++i) {
learner->UpdateOneIter(i, p_mat.get());
}
ASSERT_TRUE(data.HostCanWrite());
// pull data into device.
data = HostDeviceVector<Entry>(data.HostVector(), 0);
data.DeviceSpan();
ASSERT_FALSE(data.HostCanWrite());
// another new learner
learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
for (size_t i = 0; i < 4; ++i) {
learner->UpdateOneIter(i, p_mat.get());
}
// data is not pulled back into host
ASSERT_FALSE(data.HostCanWrite());
}
#endif
} // namespace xgboost