xgboost/demo/c-api/basic/c-api-demo.c
Jiaming Yuan 1f9a57d17b
[Breaking] Require format to be specified in input URI. (#9077)
Previously, we use `libsvm` as default when format is not specified. However, the dmlc
data parser is not particularly robust against errors, and the most common type of error
is undefined format.

Along with which, we will recommend users to use other data loader instead. We will
continue the maintenance of the parsers as it's currently used for many internal tests
including federated learning.
2023-04-28 19:45:15 +08:00

222 lines
8.2 KiB
C

/**
* Copyright 2019-2023 by XGBoost contributors
*
* \file c-api-demo.c
* \brief A simple example of using xgboost C API.
*/
#include <assert.h>
#include <stddef.h>
#include <stdint.h> /* uint32_t,uint64_t */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xgboost/c_api.h>
#define safe_xgboost(call) { \
int err = (call); \
if (err != 0) { \
fprintf(stderr, "%s:%d: error in %s: %s\n", __FILE__, __LINE__, #call, XGBGetLastError()); \
exit(1); \
} \
}
/* Make Json encoded array interface. */
static void MakeArrayInterface(size_t data, size_t n, char const* typestr, size_t length,
char* out) {
static char const kTemplate[] =
"{\"data\": [%lu, true], \"shape\": [%lu, %lu], \"typestr\": \"%s\", \"version\": 3}";
memset(out, '\0', length);
sprintf(out, kTemplate, data, n, 1ul, typestr);
}
/* Make Json encoded DMatrix configuration. */
static void MakeConfig(int n_threads, size_t length, char* out) {
static char const kTemplate[] = "{\"missing\": NaN, \"nthread\": %d}";
memset(out, '\0', length);
sprintf(out, kTemplate, n_threads);
}
int main() {
int silent = 0;
int use_gpu = 0; // set to 1 to use the GPU for training
// load the data
DMatrixHandle dtrain, dtest;
safe_xgboost(XGDMatrixCreateFromFile("../../data/agaricus.txt.train?format=libsvm", silent, &dtrain));
safe_xgboost(XGDMatrixCreateFromFile("../../data/agaricus.txt.test?format=libsvm", silent, &dtest));
// create the booster
BoosterHandle booster;
DMatrixHandle eval_dmats[2] = {dtrain, dtest};
safe_xgboost(XGBoosterCreate(eval_dmats, 2, &booster));
// configure the training
// available parameters are described here:
// https://xgboost.readthedocs.io/en/latest/parameter.html
safe_xgboost(XGBoosterSetParam(booster, "tree_method", use_gpu ? "gpu_hist" : "hist"));
if (use_gpu) {
// set the GPU to use;
// this is not necessary, but provided here as an illustration
safe_xgboost(XGBoosterSetParam(booster, "gpu_id", "0"));
} else {
// avoid evaluating objective and metric on a GPU
safe_xgboost(XGBoosterSetParam(booster, "gpu_id", "-1"));
}
safe_xgboost(XGBoosterSetParam(booster, "objective", "binary:logistic"));
safe_xgboost(XGBoosterSetParam(booster, "min_child_weight", "1"));
safe_xgboost(XGBoosterSetParam(booster, "gamma", "0.1"));
safe_xgboost(XGBoosterSetParam(booster, "max_depth", "3"));
safe_xgboost(XGBoosterSetParam(booster, "verbosity", silent ? "0" : "1"));
// train and evaluate for 10 iterations
int n_trees = 10;
const char* eval_names[2] = {"train", "test"};
const char* eval_result = NULL;
for (int i = 0; i < n_trees; ++i) {
safe_xgboost(XGBoosterUpdateOneIter(booster, i, dtrain));
safe_xgboost(XGBoosterEvalOneIter(booster, i, eval_dmats, eval_names, 2, &eval_result));
printf("%s\n", eval_result);
}
bst_ulong num_feature = 0;
safe_xgboost(XGBoosterGetNumFeature(booster, &num_feature));
printf("num_feature: %lu\n", (unsigned long)(num_feature));
// predict
bst_ulong out_len = 0;
int n_print = 10;
/* Run prediction with DMatrix object. */
char const config[] =
"{\"training\": false, \"type\": 0, "
"\"iteration_begin\": 0, \"iteration_end\": 0, \"strict_shape\": false}";
/* Shape of output prediction */
uint64_t const* out_shape;
/* Dimension of output prediction */
uint64_t out_dim;
/* Pointer to a thread local contigious array, assigned in prediction function. */
float const* out_result = NULL;
safe_xgboost(
XGBoosterPredictFromDMatrix(booster, dtest, config, &out_shape, &out_dim, &out_result));
printf("y_pred: ");
for (int i = 0; i < n_print; ++i) {
printf("%1.4f ", out_result[i]);
}
printf("\n");
// print true labels
safe_xgboost(XGDMatrixGetFloatInfo(dtest, "label", &out_len, &out_result));
printf("y_test: ");
for (int i = 0; i < n_print; ++i) {
printf("%1.4f ", out_result[i]);
}
printf("\n");
{
printf("Dense Matrix Example (XGDMatrixCreateFromMat): ");
const float values[] = {0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1, 0, 0, 0, 0};
DMatrixHandle dmat;
safe_xgboost(XGDMatrixCreateFromMat(values, 1, 127, 0.0, &dmat));
const float* out_result = NULL;
safe_xgboost(
XGBoosterPredictFromDMatrix(booster, dmat, config, &out_shape, &out_dim, &out_result));
assert(out_dim == 1);
assert(out_shape[0] == 1);
printf("%1.4f \n", out_result[0]);
safe_xgboost(XGDMatrixFree(dmat));
}
{
printf("Sparse Matrix Example (XGDMatrixCreateFromCSR): ");
const uint64_t indptr[] = {0, 22};
const uint32_t indices[] = {1, 9, 19, 21, 24, 34, 36, 39, 42, 53, 56,
65, 69, 77, 86, 88, 92, 95, 102, 106, 117, 122};
const float data[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
DMatrixHandle dmat;
char j_indptr[128];
MakeArrayInterface((size_t)indptr, 2ul, "<u8", sizeof(j_indptr), j_indptr);
char j_indices[128];
MakeArrayInterface((size_t)indices, sizeof(indices) / sizeof(uint32_t), "<u4",
sizeof(j_indices), j_indices);
char j_data[128];
MakeArrayInterface((size_t)data, sizeof(data) / sizeof(float), "<f4", sizeof(j_data), j_data);
char j_config[64];
MakeConfig(0, sizeof(j_config), j_config);
safe_xgboost(XGDMatrixCreateFromCSR(j_indptr, j_indices, j_data, 127, j_config, &dmat));
const float* out_result = NULL;
safe_xgboost(
XGBoosterPredictFromDMatrix(booster, dmat, config, &out_shape, &out_dim, &out_result));
assert(out_dim == 1);
assert(out_shape[0] == 1);
printf("%1.4f \n", out_result[0]);
safe_xgboost(XGDMatrixFree(dmat));
}
{
printf("Sparse Matrix Example (XGDMatrixCreateFromCSC): ");
const uint64_t indptr[] = {
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3,
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11,
12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15,
15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22};
const uint32_t indices[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const float data[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
char j_indptr[128];
MakeArrayInterface((size_t)indptr, 128ul, "<u8", sizeof(j_indptr), j_indptr);
char j_indices[128];
MakeArrayInterface((size_t)indices, sizeof(indices) / sizeof(unsigned), "<u4",
sizeof(j_indices), j_indices);
char j_data[128];
MakeArrayInterface((size_t)data, sizeof(data) / sizeof(float), "<f4", sizeof(j_data), j_data);
char j_config[64];
MakeConfig(0, sizeof(j_config), j_config);
DMatrixHandle dmat;
safe_xgboost(XGDMatrixCreateFromCSC(j_indptr, j_indices, j_data, 1, j_config, &dmat));
const float* out_result = NULL;
safe_xgboost(
XGBoosterPredictFromDMatrix(booster, dmat, config, &out_shape, &out_dim, &out_result));
assert(out_dim == 1);
assert(out_shape[0] == 1);
printf("%1.4f \n", out_result[0]);
safe_xgboost(XGDMatrixFree(dmat));
}
// free everything
safe_xgboost(XGBoosterFree(booster));
safe_xgboost(XGDMatrixFree(dtrain));
safe_xgboost(XGDMatrixFree(dtest));
return 0;
}